
LAF Fabric Documentation
Release 4.5.3

Dirk Roorda

June 25, 2015





Contents

1 Welcome 3
1.1 Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Who is using LAF-Fabric? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Release Notes 5
2.1 4.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 4.4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 4.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 About 17
3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Designed for Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 LAF feature coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Getting Started 21
4.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 On a VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Your python setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Get LAF-Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Install LAF-Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Get the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 Test and run LAF-Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9 More configuration for LAF-Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.10 Writing notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Background 27
5.1 What is LAF/GrAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Existing tools for LAF/GrAF resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 LAF-Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Interactive notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Implementation highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.8 Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.9 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



6 API Reference 31
6.1 Parts of the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Where is the API? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Calling the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Node order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 LAF API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6 Extra data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 ETCBC Reference 45
7.1 What is ETCBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Node order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Annotating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7 Extra Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.8 Feature documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.9 MQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 EMDROS2LAF reference 51
8.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.6 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9 laf 4.5.3 53
9.1 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 laf.fabric module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.3 laf.elements module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.4 laf.data module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.5 laf.model module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.6 laf.parse module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.7 laf.names module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.8 laf.settings module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.9 laf.timestamp module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.10 laf.lib module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 etcbc 4.5.3 59
10.1 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 etcbc.preprocess module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3 etcbc.annotating module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4 etcbc.featuredoc module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11 emdros2laf 4.5.3 61
11.1 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.2 emdros2laf.settings module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.3 emdros2laf.etcbc module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.4 emdros2laf.laf module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.5 emdros2laf.transform module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.6 emdros2laf.validate module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.7 emdros2laf.run module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.8 emdros2laf.mylib module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Indices and tables 67

Python Module Index 69

ii



LAF Fabric Documentation, Release 4.5.3

(for provenance of this image, see 1)

Contents:

1 Image found by an internet search on fabric and some other term that I forgot. By a google search on the image itself, I managed to find the
original context at http://www.hobbycraft.co.uk/hobbycraft-textured-fabric-reel-cream-2-metre/584337-1000.

Today, 2014-01-16, that link is not accessible anymore. A google search on the image itself yields no hits except the present page and some
related pages.

So, LAF-Fabric has given this image a second life!

Contents 1



LAF Fabric Documentation, Release 4.5.3

2 Contents



CHAPTER 1

Welcome

The word fabric denotes a texture, and a LAF resource can be seen as a texture of annotations to a primary data
source.

In other languages than English, and possibly in English as well, fabric also denotes a place were stuff is made.
For etymology, see faber. The location of industry, a factory (but that word derives from the slightly different
facere).

What if you want to study the data that is in the fabric of a LAF resource? You need tools. And what if you want
to add your own tapestry to the fabric?

You need an interactive environment where tools can be developed and data can be combined.

This is the LAF Fabric, and here is a simple example of what you can do with it:

• gender notebook

1.1 Author

LAF-Fabric has been developed by Dirk Roorda, working at DANS and TLA. The need for it arose while executing
a CLARIN-NL project SHEBANQ, by which the contents of the Hebrew Text Database of the ETCBC was
converted from EMDROS (that conversion is also part of LAF-Fabric). into LAF.

3

http://tla.mpi.nl
http://www.dans.knaw.nl
http://www.godgeleerdheid.vu.nl/etcbc
http://en.wiktionary.org/wiki/faber
http://en.wiktionary.org/wiki/facio
http://nbviewer.ipython.org/github/ETCBC/laf-fabric/blob/master/examples/gender.ipynb
http://www.dans.knaw.nl
http://tla.mpi.nl
http://www.clarin.nl
http://www.slideshare.net/dirkroorda/shebanq-gniezno
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://www.godgeleerdheid.vu.nl/etcbc
http://emdros.org
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326


LAF Fabric Documentation, Release 4.5.3

1.2 Who is using LAF-Fabric?

People at the Theology Department of the VU University Amsterdam are producing notebooks for their research
into the text of the Hebrew Bible, see

• The ETCBC’s github repository (highlight: trees for Data Oriented Parsing)

• Gino Kalkman’s analysis of the verbal forms in the Psalms, accompanying his Ph.D. thesis

• other contributions

LAF-Fabric has been used in several ways to construct the SHEBANQ demonstrator query saver.

The development of LAF-Fabric continues, but its progress now takes place mostly inside the module etcbc, a
specialized module to support working with the Hebrew Text Database of the ETCBC.

4 Chapter 1. Welcome

https://github.com/ETCBC/laf-fabric-nbs
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees_etcbc4.ipynb
https://github.com/ETCBC/Biblical_Hebrew_Analysis
https://github.com/ETCBC/study
http://shebanq.ancient-data.org
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71


CHAPTER 2

Release Notes

2.1 4.5.3

The API element L has a new method L.p which enables you to drill down quickly to a book, chapter, verse,
sentence, clause and phrase of your choice.

Under the hood: the L API element was coded in the laf package, although it used ETCBC-specific concepts.
Now it has been moved to the etcbc package entirely.

In order to find the documentation of L you should consult the ETCBC reference.

Fixes: preparation of data still failed in some cases.

2.2 4.5.2

Fix: preparation of data failed in some cases.

2.3 4.5.1

Fix: prepared data is only loaded when needed, like all other data.

2.4 4.5

New API element L (with methods L.d and L.u) based on new preprocessed data. These methods take you from
a node up to container nodes or down to contained nodes. This is a big improvement in the interplay between
MQL queries and LAF-Fabric. The better practice is to write a clean MQL query to get the targeted patterns, and
use L to retrieve information from the context of the hits.

Warning: when your LAF-Fabric needs the data for L for the first time, it will compute it and store it as binary
data on disk. This computation takes several minutes. In subsequent cases, LAF-Fabric can load the data from
disk in a matter of seconds.

2.5 4.4.7

Bug fixes and documentation.

5



LAF Fabric Documentation, Release 4.5.3

2.6 4.4.6

The etcbc.px module has been replaced by etcbc.extra. This is a generalized module to transform extra data to
annotations. It can be used to process data from px files, but also data from lexicon files. New lexicon data is
underway.

2.6.1 4.4.5

The etcbc.px module has been generalized to etcbc.extra. It is a module to turn extra data into a valid annotation
set.

2.6.2 4.4.4

Minor fixes.

2.6.3 4.4.3

The welcome string now contains a reference to the feature documentation.

2.7 Past

2.7.1 4.4.2

etcbc.featuredoc now produces sphinx output that can be put on a readthedocs website.

2.7.2 4.4.1

Documentation update. Links to the original data as archived in DANS-EASY.

2.7.3 4.4

Adaption to the new ETCBC4 version of the data: in documentation and in the etcbc and emdros2laf packages.
Bugfixes.

2.7.4 4.3.5

Documentation update. The data source BHS4 has been rebaptized to ETCBC4, and the documentation, which
was geared towards the BHS3 data source, is now adjusted to ETCBC4.

2.7.5 4.3.4

Fine tuning of the Hebrew transliteration. The new plain text looks exceedingly well now. All changes w.r.t. the
previous version of the ETCBC database have been reviewed, which has resulted in new code to generate the fine
points of Hebrew text and type, e.g. multiple accents and vowel pointings, and inversed nuns.

2.7.6 4.3.3

The transliteration in etcbc.lib which converts between Hebrew characters and transliterated latin characters, has
been extended to deal with vowel pointings and accents too.

6 Chapter 2. Release Notes



LAF Fabric Documentation, Release 4.5.3

2.7.7 4.3.1

The module etcbc.px retrieves one more field, called instruction from the px files.

2.7.8 4.3

Changes in the annotation space, a new etcbc.px which can read certain types of px data and transform it into an
extra LAF annotation package.

Incompatible changes

Due to the new names for edge features, the data for BHS3 and BHS4 has been recompiled, and all tasks that use
the old names have to be updated.

2.7.9 4.2.15

A few changes in etcbc.emdros2laf: edge annotations are no longer empty annotations, but have a feature structure.

2.7.10 4.2.14

A few changes in etcbc.emdros2laf, which facilitates generating feature declaration documents.

2.7.11 4.2.13

In the API you can ask for the locations of the data directory and the output directory.

2.7.12 4.2.12

LAF-Fabric reports the date and time when it has loaded data for a task. So in every notebook you can see the
version of LAF-Fabric, the datetime when the loaded data has been compiled, and the datetime when this data has
been loaded for this task. This is handy when you share tasks via nbviewer.

2.7.13 4.2.11

New API element EE, which yield all edges in unspecified order. The module featuredoc can now document all
features, also edge features.

2.7.14 4.2.10

Separated the data directory laf-fabric-data into an input directory (laf-fabric-data) and an output directory (laf-
fabric-output). In this way, it is easier to download new versions of the data without overwriting your own task
results.

2.7.15 4.2.9

Minor improvements in the emdros2laf conversion, discovered when converting the new BHS4 version of the
Hebrew Text database. If you want to use the BHS4 data (beta), download the data again.

2.7. Past 7

https://www.dropbox.com/s/1oqvb92sqn7vuml/laf-fabric-data.zip


LAF Fabric Documentation, Release 4.5.3

2.7.16 4.2.8

Minor improvements in the laf-api.

2.7.17 4.2.7

API

Added NK, which can be passed as a sort key for node sets. It corresponds with the “natural order” on nodes. If an
additional module, such as etcbc.preprocess has modified the natural order, this sort key will reflect the modified
order. If you let NN() yield nodes, they appear in this same order.

Also added MK, which can be passed as a sort key for sets of anchors. It corresponds with the “natural order” on
anchor sets.

ETCBC

Improvements in etcbc.trees, the module that generates trees from the ETCBC database.

2.7.18 4.2.6

Developed the etcbc.trees module further. Trees based on the implicit embedding relationship do not exhibit all
embedding structure: clauses can be further embedded by means of an explicit mother relationship. The rules are
a bit intricate, but it has been implemented (BHS3 only, no CALAP). See the updates trees notebook.

2.7.19 4.2.5

Added tree defining functionality to the etcbc package: etcbc.trees. You can make the implicit embedding rela-
tionship between objects explicit by means of parent and children relationships.

Adapted the node order as customized by etcbc.preprocess: the order is now a total ordering. Main idea: try to
order monad sets by the subset relation, where embedder comes before embedded. If the sets are equal, use the
object type to force a decision. If two monad sets cannot be ordered by the subset relation, look at the elements
that they do not share. The monad set that contains the smallest of these elements, is considered to come before
the other.

2.7.20 4.2.4

Added Syriac transcription conversions.

2.7.21 4.2.3

In emdros2laf every source can now have its own metadata. In etcbc there is a workable definition between
consonantal Hebrew characters and their ETCBC latin transcriptions.

2.7.22 4.2.2

More fixes in emdros2laf, a new source, the CALAP has been converted to LAF. LAF-Fabric has compiled it, and
it is ready for exploration. See the example notebook plain-calap. The CALAP is included in the data download
(see Getting Started).

8 Chapter 2. Release Notes

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees_bhs.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/syriac/plain_calap.ipynb


LAF Fabric Documentation, Release 4.5.3

2.7.23 4.2.1

Small fixes in emdros2laf.

2.7.24 4.2

LAF Usability

The conversion program from EMDROS to LAF (now the package emdros2laf ) has been integrated in LAF-
Fabric. Because of this a small reorganization of subdirectories was necessary (again). The EMDROS source of
the LAF has a place in laf-fabric-data as well. So: again: a new download of the data is required.

2.7.25 4.1.4

LAF Usability

Small reorganization of subdirectories. The structure is now better adapted to work with completely different data
sources. Update your configuration files. The trailing directory names must be removed. So:

work_dir = ~/laf-fabric-data/etcbc-bhs

should change into:

work_dir = ~/laf-fabric-data

Same for laf-dir.

Because of this reorganization you have to download the data again.

2.7.26 4.1.3

Small fixes.

2.7.27 4.1.2

LAF Usability

Small usability improvements in etcbc and in laf.

2.7.28 4.1.1

LAF Usability

After loading LAF-Fabric display the compilation data and time of the data used.

2.7.29 4.1

ETCBC Emdros integration

In the etcbc package there is a module mql that enables the user to run emdros queries, capture the results as a
node set, and use that for further processing in LAF-Fabric. See notebook MQL

2.7. Past 9

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/querying/MQL.ipynb


LAF Fabric Documentation, Release 4.5.3

2.7.30 4.0.6

API

In specifying what features to load, you may omit namespaces and labels. You can specify the features to load in
a much less verbose way.

The functions load() and load_again() have a new optional parameter add, which instructs laf fabric to
do an incremental loading, without discarding anything that has already been loaded.

ETCBC

The order defined by etcbc.preprocess has been refined, so that it can also deal with empty words.

Under the hood

More unit tests, especially w.r.t. node order and empty words. The example data on which the unit tests act, has
been enlarged: it now contains also Isaiah 41:19 in which two empty words occur.

2.7.31 4.0.5

Usability

Better error handling, especially when the load dictionary does not conform to the specs of the API reference.

Under the hood

More unit tests, especially w.r.t. error checking, and node order, and the BF API element.

2.7.32 4.0.4

API

The special edge features for all annotated edges and unannotated edges are now called laf:.y and laf:.x,
because otherwise their names become private method names in Python.

2.7.33 Under the hood

More unit tests.

2.7.34 Incompatible changes

Because of the renaming of special edge features, a new copy of the data is needed. Download the latest version.

2.7.35 4.0.3

API

The methods of the connectivity objects (except e() yield all iterators and have an optional parameter
sort=False. The API elements now can be added very easily to your local namespace by saying:
exec(Fabric.localnames.format(var=’Fabric’)).

10 Chapter 2. Release Notes



LAF Fabric Documentation, Release 4.5.3

2.7.36 4.0.2

API

For connectivity there is a new API method: C.feature.e(n). This returns True if and only if n is con-
nected to a node by means of an edge annotated with feature. This function can also be obtained by using
C.feature.v(n), but the direct e(n) is much more efficient.

Usability

When calling up features as in F_shebanq_ft_part_of_speech, you may now leave out the namespace
and also the label. So F.part_of_speech also works.

2.7.37 4.0.1

Small bug fixes.

2.7.38 4.0

API

The API has changed for initializing the processor and for working with connectivity (C and Ci). Please consult
API Reference.

Usability

• There is an example dataset included: Genesis 1:1 according to the ETCBC database.

• Configuration is easier: a global config file in your home directory.

• There is a laf-fabric-test.py script for a basic test.

Incompatible changes

More data has been precompiled. This reduces the load time when working with LAF-Fabric. The data organiza-
tion has changed. Please download a new version of the data.

Configuration is easier now. A single config file in your home directory is sufficient. There are also other ways,
including a config file next to your notebook.

Changes under the hood

• The mechanism to store and load LAF data now has a hook by which auxiliary modules can register new
data with LAF Fabric. Currently, this mechanism is used by the etcbc module to inject a better ordering
of the nodes than LAF Fabric can generate on its own. In future versions we will use this mechanism to
load compute and load extra indices needed for working with the EMDROS database.

• Unit tests. In the file lf-unittest.py there are now several unit tests. If they pass most things in LAF-Fabric
are working as expected. However, the set needs to be enlarged before new changes are undertaken.

2.7. Past 11



LAF Fabric Documentation, Release 4.5.3

2.7.39 3.7

API

• You can make additional sorting persistent now, so that it becomes part of the compiled data. See the prep
function in the API reference.

Usability

• It is possible to set a verbosity level for messages.

• There were chunks of time consuming data that were either completely or often unnecessary. This data has
been removed, or is loadable on demand respectively. Overall performance during load time is a bit better
now.

Extra’s

The etcbc module has a method to compute a better ordering on the nodes. This module works together with the
new API method to store computed results.

2.7.40 3.6

API

There is a significant addition for dealing with the order of nodes:

• New function BF(nodea, nodeb) for node comparison. Handy to find the nodes that cannot be ordered
because they have the same start points and end points in the primary data.

• New argument to NN() for additionally sorting those enumerated nodes that have the same start points and
end points in the primary data.

Incompatible changes

• The representation of node anchors has changed. Existing LAF resources should be recompiled.

Usability

When LAF-Fabric starts it shows a banner indicating its version.

2.7.41 3.5.1

Bugfixes

Opening and closing of files was done without specifying explicitly the utf-8 encoding. Python then takes
the result of locale.getprefferredencoding() which may not be utf-8 on some systems, notably
Windows ones.

Remedy: every open() call for a text file is now passed the encoding=’utf-8’ parameter. open() calls
for binary files do not get an encoding parameter of course.

12 Chapter 2. Release Notes



LAF Fabric Documentation, Release 4.5.3

2.7.42 3.5

Usability

Code supporting ETCBC notebooks has moved into separate package etcbc, included in the laf distribution.

2.7.43 3.4.1

Usability

When loading data in a notebook, the progress messages are far less verbose.

API

Added an introspection facility: you can ask the F object which features are loadable.

2.7.44 3.4

API

Changes in the way you refer to input and output files. You had to call them as methods on the processor
object, now they are given with the API() call, like the msg() method.

Bugfixes

Under some conditions XML identifiers got mistakenly unloaded. Fixed by modifying the big table with condi-
tions in check_load_status in laf.laf.

2.7.45 3.3.7

Usability

Configuration fix: the LAF source directory can be anywhere on the system, specified by an optional config
setting. If this setting is not specified, LAF-Fabric works with a binary source only.

A download link to the data is provided, it is a dropbox link to a zipped file with a password. You can ask me for
a password.

Focus on working with notebooks. Command line usage only supported for testing and debugging, not on Win-
dows.

Documentation

Thoroughly reorganized and adapted to latest changes.

Notebooks

This distribution only contains example tasks and notebooks. The real stuff can be found in the ETCBC repository
and in a study repo maintained by Judith Gottschalk.

2.7. Past 13

mailto:dirk.roorda@dans.knaw.nl
https://github.com/ETCBC/laf-fabric-nbs
https://github.com/ETCBC/study


LAF Fabric Documentation, Release 4.5.3

2.7.46 3.3.6

Usability

The configuration file, laf-fabric.cfg will no longer be distributed. Instead, a file laf-fabric-sample.cfg will be
distributed. You have to copy it to laf-fabric.cfg which you can adapt to your local situation. Subsequent updates
will not affect your local settings.

2.7.47 3.3.5

API

New methods to find top most and bottom most nodes when traveling from a node set along annotated edges. See
C, Ci (Connectivity).

2.7.48 3.3.4

Notebook additions only.

The notebook clause_constituent_relation is an example how you can investigate a LAF data source and document
your findings.

We intend to create a separate github dedicated to notebooks that specifically analyse the Hebrew Text Database.

2.7.49 3.3.3

Other

Bugfixes: Data loading, unloading, keeping data better adapted to circumstances.

2.7.50 3.3.2

API

• New API element Ci for connectivity. There is a new object Ci analogous to C by which you can traverse
from nodes via annotated edges to other nodes. The difference is that Ci uses the edges in the opposite
direction. See C, Ci (Connectivity).

Incompatible changes

Bugfix. The order of node events turned out wrong in the case of nodes that are linked to point regions, i.e. regions
with zero width (e.g. (n, n), being the point between characters n-1 and n). This caused weird behaviour in
the tree generating notebook trees (rough path).

Yet it is impossible to guarantee natural behaviour in all cases. If there are nodes linked to empty regions in your
LAF resource, you should sort the node events per anchor yourself, in your custom task. Existing LAF resources
should be recompiled.

Other

The trees (smooth path) notebook is evolving to get nice syntax trees from the Hebrew database.

14 Chapter 2. Release Notes

http://nbviewer.ipython.org/github/ETCBC/study/blob/master/notebooks/clause_constituent_relation.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric/blob/master/examples/trees-r.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees.ipynb


LAF Fabric Documentation, Release 4.5.3

2.7.51 3.3.1

Bugfix. Thanks to Grietje Commelin for spotting the bug so quickly. My apologies for any tension it might have
created in the meantime. Better code under the hood: the identifiers for nodes, edges and regions now start at 0
instead of 1. This reduces the need for many + 1 and - 1 operations, including the need to figure out which one
is appropriate.

3.3

2.7.52 API

• Node events are added to the API, see NE (Next Event). With NE() you traverse the anchor positions in
the primary data, and at each anchor position there is a list of which nodes start, end, resume or suspend
there. This helps greatly if your task needs the embedding structure of nodes. There are facilities to suppress
certain sets of node events.

Incompatible changes

• Node events make use of new data structures that are created when the LAF resource is being compiled.
Existing LAF resources should be recompiled.

2.7.53 3.2.1

API

• API elements are now returned as named entries in a dictionary, instead of a list. In this way, the task
code that calls the API and gives names to the elements remains more stable when elements are added
to the API.

• Documentation: added release notes.

• New Example Notebook: participle.

Incompatible changes

• API() in laf.task now returns a keyed dictionary instead of a 6-tuple. The statement where you
define API is now

API = processor.API() F = API[’F’] NN = API[’NN’] ...

(was:

(msg, NN, F, C, X, P) = processor.API()

)

2.7.54 3.2.0

API

• Connectivity added to the API, see C, Ci (Connectivity). There is an object C by which you can traverse
from nodes via annotated edges to other nodes.

• Documentation organization: separate section for API reference.

2.7. Past 15

http://xkcd.com/859/
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/lingvar/participle.ipynb


LAF Fabric Documentation, Release 4.5.3

Incompatible changes

• API() in laf.task now returns a 6-tuple instead of a 5-tuple: C has been added.

• nodes or edges annotated by an empty annotation will get a feature based on the annotation label.
This feature yields value ’’ (empty string) for all nodes or edges for which it is defined. Was 1.
Existing LAF resources should be recompiled.

16 Chapter 2. Release Notes



CHAPTER 3

About

3.1 Description

LAF-fabric is a Python tool for running Python notebooks with access to the information in a LAF resource. It
has these major components:

• the laf package

– a LAF compiler for transforming a LAF resource into binary data that can be loaded nearly in-
stantly into Python data structures;

– an execution environment that gives Python notebooks access to LAF data and is optimized for
feature lookup.

• the etcbc package

– an extension toolkit geared to a specific LAF resource: the ETCBC Hebrew Text Database.

• the emdros2laf package

– conversion from EMDROS to LAF. The ETCBC Hebrew is originally available as an EMDROS
database. This package performs the conversion to LAF.

The selling point of LAF-fabric is performance, both in terms of speed and memory usage. The second goal is
to make it really easy for you to write analytic notebooks straightforwardly in terms of LAF concepts without
bothering about performance.

Both points go hand in hand, because if LAF-fabric needs too much time to execute your notebooks, it becomes
very tedious to experiment with them. I wrote LAF-fabric to make the cycle of trial and error with your notebooks
as smooth as possible.

3.2 Workflow

The typical workflow is:

1. download a LAF resource 1 to your computer (or work with a compiled version 2).

2. install LAF-fabric on your computer.

3. adapt a config file to change the location of the work directory.

4. write your own iPython notebook or script

1 A LAF resource is a directory with a primary data file, annotation files and header files. This program has been tested with LAF version
of the Hebrew Bible.

2 It is perfectly possible to run the workflow without the original LAF resource. If somebody has compiled a LAF resource for you, you
only need to obtain you the compiled data, and let the LAF source in the configuration point to something non-existent. In that case LAF-fabric
will not complain, and never attempt to recompile the original resource. You can still add extra annotation packages, which can be compiled
against the original LAF source, since the original LAF XML identifiers are part of the compiled data. In case of the Hebrew Bible LAF
resource: the original resource is 1.64 GB on disk, while the compiled binary data is 268 MB.

17

http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://ipython.org


LAF Fabric Documentation, Release 4.5.3

5. run the code cells in an iPython notebook or your script

You can run your cells, modify them, run them again, ad libitum. While the notebook is alive, loading and
unloading of data will be done only when it is really needed.

So if you have to debug a notebook, you can do so without repeatedly waiting for the loading of the data.

The first time a source or annox 3 is used, the LAF resource will be compiled. Compiling of the full Hebrew Bible
source may take considerable time, say 10 minutes for a 2 GB XML annotations on a Macbook Air (2012). The
compiled source will be saved to disk across runs of LAF-fabric. Loading the compiled data takes, in the same
setting with the Hebrew Bible, less than a second, but then the feature data is not yet loaded, only the regions,
nodes and edges. If you need the original XML identifiers for your notebook, there will be 2 to 5 seconds of extra
load time.

You must declare the LAF-features that you use in your notebook, and LAF-fabric will load data for them. Loading
a feature typically adds 0.1 to 1 second to the load time. Edge features may take some seconds, because of the
connectivity data that will be built on the basis of edge information.

LAF-Fabric will also unload the left-over data from previous runs for features that the current run has not declared.
In this way we can give each run the maximal amount of RAM.

3.3 License

This work is freely available, without any restrictions. It is free for commerical use and non-commercial use. The
only limitation is that parties that include this work may not in anyway restrict the freedom of others to use it.

3.4 Designed for Performance

Since there is a generic LAF tool for smaller resources, (POIO, Graf-python) this tool has been designed with
performance in mind. In fact, performance has been the most important design criterion of all. There isa price for
that: we use a simplified feature concept. See the section of LAF LAF feature coverage below.

3.5 LAF feature coverage

This tool cannot deal with LAF resources in their full generality.

In LAF, annotations have labels, and annotations are organized in annotation spaces. In a previous version, LAF-
fabric ignored annotation spaces altogether. Now annotation spaces are fully functional.

primary data LAF-fabric deals with primary data in the form of text. It is not designed for other media such as
audio and video. Further, it is assumed that the text is represented in UNICODE, in an encoding supported
by python, such as utf-8. LAF-fabric assumes that the basic unit is the UNICODE character. It does not
deal with alternative units such as bytes or words.

feature structures The content of an annotation can be a feature structure. A feature structure is a set of features
and sub features, ordered again as a graph. LAF-fabric can deal with feature structures that are merely sets
of key-value pairs. The graph-like model of features and subfeatures is not supported.

annotations Even annotations get lost. LAF-fabric is primarily interested in features and values. It forgets the
annotations in which they have been packaged except for:

• the annotation space,

• the annotation label,

• the target kind of the annotation (node or edge)

3 Shorthand for extra annotation package. You can add an extra package of annotations in LAF format to your data. When needed, this
annox will be compiled into binary data and combined with the compiled data of the main LAF resource. So you can integrate your own
annotation work with the annotations that have been done before. You cannot add new regions, nodes, edges in this way.

18 Chapter 3. About

http://ipython.org
http://media.cidles.eu/poio/graf-python/


LAF Fabric Documentation, Release 4.5.3

dependencies In LAF one can specify the dependencies of the files containing regions, nodes, edges and/or an-
notations. LAF-fabric assumes that all dependent files are present in the resource. Hence LAF-fabric reads
all files mentioned in the GrAF header, in the order stated in the GrAF header file. This should be an order
in which regions appear before the nodes that link to them, nodes before the edges that connect them, and
nodes and edges before the annotations that target them.

3.6 Future directions

LAF-Fabric has proven to function well for in increasing number of tasks. This proves that the methodology
works and we are trying more challenging things. The direction of the future work should be determined by your
research needs.

3.6.1 Adding new annotations

LAF-Fabric supports adding an extra annotation package to the existing LAF resource, and contains an example
workflow to create such packages. We have used it to add an extra annotation package to the ETCBC Hebrew Text
Database containing data that has not made it yet to the published set of features, but it relevant to researchers.
See the notebook extra px data

3.6.2 Visualization

You can invoke additional packages for data analysis and visualization right after your task has been completed in
the notebook.

The division of labour is that LAF-Fabric helps you to extract the relevant data from the resource, and outside
LAF-Fabric, but still inside your notebook, you continue to play with that data.

When we get more experience with visualization, we might need new ways of data extraction, which would drive
a new wave of changes in LAF-Fabric.

3.6.3 Graph methodology and full feature structures

LAF-Fabric has not been implemented as a graph database. We might adopt more techniques from graph databases
to make it more compatible with current graph technology. We could use the python networkx module for that.
That would also help to implement feature structures in full generality.

3.6.4 API completion

The API offers functionality that covers the following aspects of a LAF resource:

node iterator iterator that produces nodes in the order by which they are anchored to the primary data (which are
linearly ordered).

feature lookup a class that gives easy access to feature data and has methods for feature value lookup and mapping
of feature values.

connectivity adjacency information for nodes, by which you can travel via (annotated) edges to neighbouring
nodes; there are also methods to generate sets of end-points when traveling from a nodeset along featured
edges until there are no outgoing edges. You can also travel in the opposite direction.

xml identifier mapping a two-way mapping from orginal identifiers in the LAF XML resource to integers that
denote the corresponding nodes in LAF-Fabric.

primary data access The primary data can be accessed through nodes that are linked to regions of primary data.

hooks for custom pre-computed data Third party modules geared to a particular LAF resource may perform ad-
ditional computations and store the result alongside the complied data.

3.6. Future directions 19

http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/extradata/para%20from%20px.ipynb
http://networkx.github.io/


LAF Fabric Documentation, Release 4.5.3

20 Chapter 3. About



CHAPTER 4

Getting Started

4.1 About

LAF-Fabric is a github project in which there are Python packages called laf and etcbc and emdros2laf. You must
install them as packages in your current python installation. This can be done in the standard pythonic way, and
the precise instructions will be spelled out below.

4.2 Platforms

LAF-Fabric is being developed on Mac OSX Mavericks on a Macbook Air with 8 GB RAM. It is being used on a
Linux virtual machine running on a laptop of respectable age, and it runs straight under Windows as well, except
for some testing/debugging functionality.

4.3 On a VM

The most hassle-free way to get started with LAF-Fabric is on a VM on your computer. You can get that nearly au-
tomatically from a Vagrant definition in the llshebanq project. Then you can skip the rest until Writing Notebooks
below.

4.4 Your python setup

First of all, make sure that you have the right Python installation. You need a python3 installation with numerous
scientific packages. Below is the easiest way to get up and running with python. You can also use it if you have
already a python, but in the wrong versions and without some necessary modules. The following setup ensures
that it will not interfere with existing python installations and it will get you all modules in one go.

4.4.1 Getting to know interactive python

The following step may take a while, so in the meantime you can familiarize yourself with ipython, if you like.
The website is a good entry point.

4.4.2 Download Anaconda

Anaconda is our distribution of choice. Choose a python3 based installer from this download page.

1. Pick the one that fits your operating system. Install it. If asked to install for single user or all users, choose
single user.

21

https://github.com/ETCBC/laf-fabric
https://github.com/ETCBC/llshebanq
http://ipython.org
https://store.continuum.io/cshop/anaconda/
http://repo.continuum.io/anaconda3/


LAF Fabric Documentation, Release 4.5.3

2. On Windows you could get into trouble if you have another Python. If you have environment variables with
the name of PYTHONPATH or PYTHONHOME, you should disable them. For diagnosis and remedy, see
1

This will install all anaconda packages in your fresh python3 installation. Now you have ipython, networkx,
matplotlib, numpy to name but a few popular python packages for scientific computing.

4.5 Get LAF-Fabric

If you have git you can just clone it from github on the command line:

cd «directory of your choice»
git clone https://github.com/ETCBC/laf-fabric

If you do not have git, consider getting it from github. It makes updating your LAF-Fabric easier later on.

Nevertheless, you can also download the latest version from github/laf-fabric. Unpack this somewhere on your file
system. Change the name from laf-fabric-master to laf-fabric. In a command prompt, navigate to this directory.

4.6 Install LAF-Fabric

Preparation: you have to unpack a tar.gz file. On Windows you may have to install a tool for that, such as
7-zip.

Here are the steps, assuming you are in the command line, at the top level directory in laf-fabric:

cd dist
tar xvf laf-*
cd laf-*
python setup.py install

This installs the generic laf processor laf and the more specific ETCBC tools to work with the Hebrew Text
Database: etcbc. It also installs emdros2laf, a conversion package from the source format of the ETCBC database
(EMDROS) to LAF. This package has been used to obtain the actual LAF version of the ETCBC database.

Note: In order to use emdros2laf and parts of etcbc, you need to install EMDROS software, which is freely
available. Tip: it works nicely with an sqlite3 backend.

4.7 Get the data

If you are interested in working with the Hebrew Bible, go to the DANS-EASY archive and download laf-fabric-
data.zip and unpack it in your home directory. If all goes well you have a directory laf-fabric-data in your home
directory.

Note: If you have already a laf-fabric-data directory, delete it, unless you have added stuff yourself (possibly
extra annotations). In that case, move your existing directory out of the way. laf-fabric-data is supposed to be
input data, i.e. the data you download plus the data that laf-fabric itself adds to it while converting from emdros
to laf or from laf to binary.

1 To check whether you have environment variables called PYTHONPATH or PYTHONHOME, go to a command prompt and say
echo %PYTHONPATH%
echo %PYTHONHOME%
If the system responds with the exact text you typed, there is nothing to worry about. Otherwise, you should rename these variables to

something like NO_PYTHONPATH or NO_PYTHONHOME.
You can do that through: Configuration (Classical View) => System => Advanced Settings => button Environment Variables.
If you have a reference to an other python in your PATH (check by echo %PATH%) then you should remove it.
After these operations, quit all your command prompts, start a new one, and say python --version. You should see something with

3.3 and Anaconda in the answer.

22 Chapter 4. Getting Started

https://github.com
https://github.com/ETCBC/laf-fabric
http://www.7-zip.org
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://emdros.org
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71


LAF Fabric Documentation, Release 4.5.3

4.8 Test and run LAF-Fabric

In the top-level directory of LAF-Fabric there is a gallery script. If you run it, you will also configure your
LAF-Fabric:

python lf-gallery.py tinys

This points laf-fabric to the example data that comes with the distribution, which is just Genesis 1:1. If you
have downloaded the binary data for the full Hebrew Text Database, then make sure the data is in ~/laf-fabric-
data/etcbc4 and run:

python lf-gallery.py fulls

After this you have a default config file ~/laf-fabric-data/laf-fabric.cfg and you can use laf-fabric scripts from
anywhere on your system, also in notebooks.

On all platforms (Windows users: use Firefox or Chrome as your browser, not Internet Explorer), you can also
run notebooks with LAF-Fabric:

cd examples
ipython notebook

This starts a python process that communicates with a browser tab, which will pop up in front of you. This is your
dashboard of notebooks. You can pick an existing notebook to work with, or create a new one. It is recommended
that you write your own notebooks in a separate directory, not under the LAF-Fabric installation. In that way you
can apply updates easily without overwriting your work.

1. Create a notebook directory somewhere in your system and navigate there in a command prompt.

2. Then:

ipython notebook

Note: If you create a notebook that you are proud of, it would be nice to include it in the example notebooks of
LAF-Fabric or in the ETCBC notebooks. If you want to share your notebook this way, mail it to me.

4.9 More configuration for LAF-Fabric

If you need the data to be at another location, you must modify the laf-fabric.cfg. This configuration file laf-
fabric.cfg is searched for in the directory of your script, or in a standard directory, which is laf-fabric-data in your
home directory.

There are just a few settings:

[locations]
data_dir = ~/laf-data-dir
laf_dir = ~/laf-data-dir
output_dir = ~/output-data-dir

data_dir is folder where all the input data is.

output_dir is folder where all the output data is, the stuff that your tasks create.

laf_dir is the folder where the original laf-xml data is. It is optional. LAF-Fabric can work without it.

Alternatively, you can override the config files by specifying the locations in your scripts. Those scripts are not
very portable, of course.

4.8. Test and run LAF-Fabric 23

https://github.com/ETCBC/contributions
mailto:dirk.roorda@dans.knaw.nl


LAF Fabric Documentation, Release 4.5.3

4.10 Writing notebooks

4.10.1 Tutorial

Here is a quick tutorial/example how to write LAF analytic tasks in an IPython notebook.

Our target LAF resource is the Hebrew text data base (see Data). Some nodes are annotated as words, and some
nodes as chapters. Words in Hebrew are either masculine, or feminine, or unknown. The names of chapters and
the genders of words are coded as features inside annotations to the nodes that represent words and chapters.

We want to plot the percentage of masculine and feminine words per chapter.

With the example notebook gender we can count all words in the Hebrew bible and produce a table, where each row
consists of the bible book plus chapter, followed by the percentage masculine words, followed by the percentage
of feminine words in that chapter:

Genesis 1,42.34769687964339,5.794947994056463
Genesis 2,38.663967611336034,7.6923076923076925
Genesis 3,37.4749498997996,10.02004008016032
Genesis 4,43.04635761589404,11.920529801324504
Genesis 5,40.74844074844075,18.91891891891892
Genesis 6,36.61327231121282,9.610983981693364
Genesis 7,33.59683794466403,11.462450592885375
Genesis 8,31.30081300813008,9.959349593495935
Genesis 9,37.97216699801193,9.74155069582505
Genesis 10,30.679156908665107,4.68384074941452

From this table we can easily make a chart, within the same notebook!

Note: If you click on the notebook link above, you are taken to the public notebook viewer website, which
shows static versions of notebooks without storing them. In order to run them, you need to download them to your
computer.

The gender notebook is self documenting, it contains general information on how to do data analysis with LAF-
Fabric.

24 Chapter 4. Getting Started

http://nbviewer.ipython.org/github/ETCBC/laf-fabric/blob/master/examples/gender.ipynb
http://nbviewer.ipython.org


LAF Fabric Documentation, Release 4.5.3

4.10.2 Next steps

Study the many ETCBC4 features.

Then have a look at the notebooks in the laf-fabric-nbs and study and contributions repositories. You find note-
books by which you can study the rich feature set in the ETCBC data and notebooks that help you to add your own
annotations to the data. These notebooks require the additional etcbc package, which comes with LAF-Fabric.

4.10. Writing notebooks 25

http://shebanq-doc.readthedocs.org/en/latest/texts/welcome.html
https://github.com/ETCBC/laf-fabric-nbs
https://github.com/ETCBC/study
https://github.com/ETCBC/contributions


LAF Fabric Documentation, Release 4.5.3

26 Chapter 4. Getting Started



CHAPTER 5

Background

5.1 What is LAF/GrAF

LAF/GrAF is a framework for representing linguistic source material plus associated annotations. LAF, Linguistic
Annotation Framework is an ISO standard (24612:2012) that describes the organization of the data. GrAF, Graph
Annotation Framework, is a set of schemas for the XML-annotations in a LAF resource.

Despite the L of linguistics, there is nothing particularly linguistic to LAF. LAF describes data that comes as a
linearly ordered primary data stream (audio, video, text, or anything that has a one dimensional order), in which
regions can be defined. Annotations are key=value pairs or feature structures in general, which conform to the
joint definition of TEI Feature Structures and ISO 24610). Between the primary data and the annotations is a
graph of nodes and edges. Some nodes are linked to regions of primary data. Some nodes are linked to other
nodes by means of edges. An annotation may refer to a node or to an edge, but not both.

So, features target the primary data through annotations. Annotations can be labeled and they can be organized in
annotation spaces.

5.2 Data

Although this tool is written to deal with LAF resources in general, it has been developed with a particular LAF
resource in mind: the ETCBC4 Text database of the Hebrew Bible, now a dataset archived at DANS-EASY. Here
is a quick link to the ETCBC4 features

The SHEBANQ project has converted this database from a special text database format into LAF (the conversion
code is in the package emdros2laf, which is included in LAF-Fabric), and the resulting LAF resource is a file set
of 1.64 GB, being predominantly linguistic annotations. It is this LAF resource that is the reference context for
LAF-Fabric.

A compiled version of this LAF resource, suitable for working with LAF-Fabric, is included in the dataset. Also
the original data has been included, so you can also run EMDROS tools on the data in conjunction with LAF-
Fabric. LAF-Fabric even contains a notebook that integrates the use of EMDROS MQL with the proper LAF
processing.

5.3 Existing tools for LAF/GrAF resources

There is an interesting Python module (POIO, Graf-python) that can read generic GrAF resources. It exposes an
API to work with the graph and annotations of such resources. However, when feeding it a resource with 430 k
words and 2 GB of annotation material, the performance is such that the graph does not fit into memory of a laptop.
Clearly, the tool has been developed for bunches of smaller GrAF documents, and not for single documents with
a half million words words and gigabytes of annotation material.

27

http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326
http://www.xces.org/ns/GrAF/1.0/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/FS.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37324
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
http://shebanq-doc.readthedocs.org/en/latest/texts/welcome.html
http://www.slideshare.net/dirkroorda/shebanq-gniezno
http://emdros.org
http://media.cidles.eu/poio/graf-python/


LAF Fabric Documentation, Release 4.5.3

5.4 LAF-Fabric

This program seeks to remedy that situation. Its aim is to provide a framework on top of which you can write
Python notebooks that perform analytic tasks on big GrAF resources. It achieves this goal by compiling xml
into compact binary data, both on disk and in RAM and by selective loading of features. The binary data loads
very fast. Only selected features will be loaded, and after loading they will be blown up into data structures that
facilitate fast lookup of values.

With LAF-Fabric you can add an additional annotation package to the basic resource. You can also switch easily
between additional packages without any need for recompiling the basic resource. The annotations in the extra
package may define new annotation spaces, but they can also declare themselves in the spaces that exist in the
basic source. Features in the extra annotation package that coincide with existent features, override the existing
ones, in the sense that for targets where they define a different value, the one of the added annotation package is
taken. Where the additional package does not provide values, the original values are used.

With this device it becomes possible for you to include a set of corrections to the original features. Or alternatively,
you can include the results of your own work, whether manual or algorithmic or both, with the original data. You
can then do what-if research on the combination.

The notebook annox_workflow demonstrates this workflow.

5.5 Interactive notebooks

LAF-Fabric is designed to work within iPython notebooks. That is a great environment to run tasks interactively,
exploring the data as you go, and visualizing your intermediate results at the moment they become available. Last
but not least, you can add documentation to notebooks and share them with your colleagues. As an example, look
at the gender notebook notebook by which you can draw a graph of the percentage of masculine and feminine
words in each chapter of the Hebrew Bible. More involved notebooks can be found at the laf-fabric-nbs repository
and the study repo.

5.6 Rationale

The paradigms for biblical research are becoming data-driven. If you work in that field, you need increasingly
sophisticated ways to get qualitative and quantitative data out of your texts. You, as a researcher, are in the best
position to define what you need. You can even fulfill those needs if you or someone else in your group has basic
programming experience.

LAF-Fabric is a stepping stone for teams in digital humanities to the wonderful world of computing. With it you
extract data from your resources of interest and feed it into your other tools.

See for example the notebook cooccurrences, which codes in less than a page an extraction of data tables relevant
to the study of linguistic variation in the Hebrew Bible. These tables are suitable for subsequent data analysis by
means of the open source statistics toolkit R.

An other example is the notebook proper, which outputs a visualization of the text of the Hebrew Bible in which
the syntactic structure of the text is visible plus the the genders of all the proper nouns. With this visualization it
becomes possible to discern genealogies from other genres with the unaided eye, even without being able to read
a letter of Hebrew.

Digging deeper into syntax, the notebook trees_etcbc4 produces syntax trees for all sentences in the Hebrew Bible.

The code of LAF-Fabric is on github, including example notebooks and extra annotation packages. You are
invited to develop your own notebooks and share them, either through data archives or directly through github, or
the notebook viewer. In doing so, you (together) will create a truly state-of-the-art research tool, adapted to your
scholarly needs of analysis, review and publication.

28 Chapter 5. Background

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/extradata/annox_workflow.ipynb
http://ipython.org
http://nbviewer.ipython.org/github/ETCBC/laf-fabric/blob/master/examples/gender.ipynb
https://github.com/ETCBC/laf-fabric-nbs
https://github.com/ETCBC/study
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/lingvar/cooccurrences.ipynb
http://www.r-project.org
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/text/proper.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees_etcbc4.ipynb
https://github.com/ETCBC/laf-fabric
http://nbviewer.ipython.org


LAF Fabric Documentation, Release 4.5.3

5.7 Implementation highlights

There are several ideas involved in compiling a LAF resource into something that is compact, fast loadable, and
amenable to efficient computing.

1. Replace nodes and edges and regions by integers.

2. Store relationships between integers in arrays, that is, Python arrays.

3. Store relationships between integers and sets of integers also in arrays.

4. Keep individual features separate.

5. Compress data when writing it to disk.

Use of integers In LAF the pieces of data are heavily connected, and the connections are expressed by means of
XML identifiers. In the compiled version we get rid of all XML identifiers. Instead, we will represent everything
that comes in great quantities by integers: regions, nodes, edges. But feature names and values, annotation labels
and spaces will be kept as is.

Relationships between integers as Python arrays In Python, an array is a C-like structure of memory slots of
fixed size. You do not have arrays of arrays, nor arrays with mixed types. This makes array handling very efficient,
especially loading data from disk and saving it to disk. Moreover, the amount of space in memory needed is like
in C, without the overhead a scripting language usually adds to its data types.

There is an other advantage: a mapping normally consists of two columns of numbers, and numbers in the left
column map to numbers in the right column. In the case of arrays of integers, we can leave out the left column: it
is the array index, and does not have to be stored.

Relationships between integers as Python arrays If we want to map numbers to sets of numbers, we need to be
more tricky, because we cannot store sets of numbers directly in the slots of an array. What we do instead is: we
build two arrays, the first array points to data records in the second array. A data record in the second array consists
of a number giving the length of the record, followed by that number of integers. The function arrayify() in
laf.lib takes a list of items and turns it in a double array.

Keep individual features separate A feature is a mapping from either nodes or edges to string values. Features
are organized by the annotations they occur in, since these annotations have a label and occur in an annotation
space. We let features inherit the label and the space of their annotations. Within space and label, features are
distinguished by name. And the part of a feature that addresses edges is kept separate from the part that addresses
nodes.

So an individual feature is identified by annotation space, annotation label, feature name, and kind (node or edge).
For example, in the Hebrew Bible data, we have the feature:

etcbc4:ft.sp (node)

with annotation space etcbc4, annotation label ft, feature name sp (part of speech), and kind node. The data
of this feature is a mapping that assigns a string value to each of the 426,555 word nodes. So this individual feature
represents a significant chunk of data.

The individual features together take up the bulk of the compiled data. Here is a break down of the compiled data:

features 150 MB
graph (nodes, edges, regions) 17 MB
primary data linking 33 MB
LAF XML identifiers mappings 59 MB
precomputed data for node order 8 MB
extra annotation package 1 MB
--------------------------------+------
total 269 MB

Most notebooks require only a limited set of individual features. So when we run tasks and switch between them,
we swap feature data in and out. The design of LAF-fabric is such that feature data is neatly chunked per individual
feature.

5.7. Implementation highlights 29



LAF Fabric Documentation, Release 4.5.3

Note: Here is the reason that we do not have an overall table for feature values, identified by integers. We
miss some compression here, but with a global feature value mapping, we would burden every task with a signif-
icant amount of memory. Moreover, the functionality of extra annotation packages is easier to implement when
individual features are cleanly separable.

Note: Features coming from the source and features coming from the extra annotation package will be combined
before the you can touch them in tasks. This merging occurs late in the process, even after the loading of features
by LAF-fabric. Only at the point in time when a task declares the names of the API methods (see API() in
laf.fabric) the feature data coming from main source and annox will be assembled into objects. Yet the
underlying tables will not mixed, so that features do not have to be unloaded and reloaded when you change your
annox. The price is a small overhead for each feature lookup: it will be looked up first in the annox data, and only
if it is not found there, in the main data.

5.8 Author

This work has been undertaken first in November 2013 by Dirk Roorda, working for Data Archiving and Net-
worked Services (DANS) and The Language Archive (TLA). The work has been triggered by the execution of the
SHEBANQ project together with the researchers Wido van Peursen, Oliver Glanz and Janet Dyk at the Eep Talstra
Centre for Bible and Computing (ETCBC), VU University.

Thanks to Martijn Naaijer and Gino Kalkman for first and on-going experiments with LAF-Fabric.

5.9 History

2014-07-31 Publication of the ETCBC4 dataset in DANS-EASY.

2014-02-16 A new github repository, study, has been created by our associate programmer Judith Gottschalk. This
repository will host the actual notebooks written for and by the ETCBC people. The LAF-Fabric repository will
only host example/tutorial notebooks.

2014-01-17 Joint presentation with Martijn Naaijer at CLIN (Computational Linguistics In the Netherlands).

2013-12-18 Demonstration on the StandOff Markup and GrAF workshop (CLARIN-D) in Köln.

2013-12-12 Demonstration for the ETCBC team Amsterdam. Updated the slides.

2013-12-09 Abstract sent to CLIN (Computational Linguistics In the Netherlands) accepted. To be delivered
2014-01-17.

2013-11-26 Vitamin Talk to the TLA team Nijmegen. Here are the slides.

30 Chapter 5. Background

http://www.dans.knaw.nl/en
http://www.dans.knaw.nl/en
http://tla.mpi.nl
http://www.slideshare.net/dirkroorda/shebanq-gniezno
http://www.godgeleerdheid.vu.nl/nl/onderzoek/instituten-en-centra/eep-talstra-centre-for-bible-and-computer/index.asp
http://www.godgeleerdheid.vu.nl/nl/onderzoek/instituten-en-centra/eep-talstra-centre-for-bible-and-computer/index.asp
http://www.persistent-identifier.nl/?identifier=urn%3Anbn%3Anl%3Aui%3A13-048i-71
https://github.com/ETCBC/study
http://clin24.inl.nl
http://cceh.uni-koeln.de/node/531
http://www.godgeleerdheid.vu.nl/etcbc
http://www.slideshare.net/dirkroorda/work-28611072
http://clin24.inl.nl
http://tla.mpi.nl
http://www.slideshare.net/dirkroorda/work-28611072


CHAPTER 6

API Reference

6.1 Parts of the API

The API deals with several aspects of task processing. First of all, getting information out of the LAF resource.
But there are also methods for writing to and reading from task-related files and for progress messages.

Finally, there is information about aspects of the organization of the LAF information, e.g. the sort order of nodes.

6.2 Where is the API?

The API is a method of the task processor: API() in laf.fabric. This method returns you a set of API
elements: objects and/or methods that you can use to retrieve information from the LAF resource: its features,
nodes, edges, primary data and even its original XML identifiers.

By calling this method you can insert the API elements in your local namespace. This has the advantage of
efficiency, because API elements might easily be called millions of times in a loop, so no time should be wasted
by things as method lookup. Local names are faster.

6.3 Calling the API

First you have to get a processor object. This is how you get it:

from laf.fabric import LafFabric
fabric = LafFabric(

work_dir='/Users/you/laf-fabric-data',
laf_dir='/Users/you/laf-fabric_data/laf',
output_dir='/Users/you/laf-fabric_output',
save=True,
verbose='NORMAL',

)

All arguments to LafFabric() are optional. If you have a config file in your home directory, you can leave out
work_dir=... and laf_dir=... and save=.... If you have not, or if you want to modify that file, you
can pass the desired values to work_dir and laf_dir and say save=True. You have to do that once, after
that you can leave out this stuff again.

The verbose argument tells LAF-Fabric how much feedback it should give you. Possible values in increasing
level of verbosity:

SILENT after initialization absolutely no messages
ERROR only error messages
WARNING only error and warning messages
INFO important information, warnings and errors

31



LAF Fabric Documentation, Release 4.5.3

NORMAL normal progress messages and everything above (default)
DETAIL detailed messages and above
DEBUG absolutely everything

Once you have the processor, you can load data, according to the source you choose:

fabric.load('etcbc4', '--', 'cooccurrences',
{

'xmlids': {
'node': False,
'edge': False,

},
'features': {

'etcbc4': {
'node': [

'db.otype',
'ft.sp,lex_utf8',
'sft.book',

],
'edge': [
],

},
},
'primary': False,

},
compile_main=False, compile_annox=False,
verbose='NORMAL',

)
exec(fabric.localnames.format(var='fabric'))

LAF-Fabric will figure out which data can be kept in memory, which data has to be cleared, and which data needs
to be loaded. You can access the LAF data by means of local variables that correspond to various elements of the
API, see below.

If you want to change what is loaded in your program, you can simply call the loader as follows:

fabric.load_again(
{

'xmlids': {
'node': True,
'edge': False,

},
'features': {

'etcbc4': {
'node': [

'db.otype,oid',
'ft.sp,lex_utf8',
'sft.book',

],
'edge': [
],

},
},
'primary': False,

},
compile_main=False, compile_annox=False,
verbose='NORMAL',

)
exec(fabric.localnames.format(var='fabric'))

32 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

Caution: If you want to call the load function inside another function, this trick with exec does not work.
Then you have to use the other method to get to the API:

API = fabric.load( ...)
F = API['F']
...

If you only want to add a bit of data, you can simply call:

fabric.load_again(
{

'features': {
'etcbc4': {

'node': [
'db.oid',

],
},

},
}, add=True

)
exec(fabric.localnames.format(var='fabric'))

You can also leave specify the features as a tuple, containing node feature specs and edge feature specs:

{
'features': (
''' etcbc4:db.oid

etcbc4:ft.sp
''',
''' etcbc4:ft.functional_parent

etcbc4:ft.mother
'''
)

}

The features for nodes and edges are specfied as a whitespace separated list of feature names.

Finally, you may omit the namespace (etcbc4:) and the labels (db, ft, sft). If this causes ambiguity, LAF-
Fabric will choose an arbitrary variant, and inform you about the choice it has made. If that choice does not suit
you, you can always disambiguate yourself by supplying label and possibly namespace yourself. So the shortest
way is:

{'features': ('oid sp', 'functional_parent mother')}

compile-source and compile-annox: If you have changed the LAF resource or the selected annotation package,
LAF-fabric will detect it and recompile it. The detection is based on the modified dates of the GrAF header file
and the compiled files. In cases where LAF-fabric did not detect a change, but you need to recompile, use this
flag.

After loading, the individual API methods can be accessed by means of local variables. These variables exist only
if they correspond with things that you have called for. Here is an overview.

F: Features (of nodes), only if you have declared node features.

FE: Features (of edges), only if you have declared edge features.

C, Ci: Connectivity, only if you have declared edge features.

P: Primary data, only if you have specified ’primary’: True.

X: XML identifiers, only in sofar as declared under ’xmlids’.

NN: The “next node” iterator.

EE: The “next edge” iterator.

6.3. Calling the API 33



LAF Fabric Documentation, Release 4.5.3

NE: The “next event” iterator, only if you have specified ’primary’: True.

msg: The function to issue messages with

infile, outfile, close, my_file: File handling (opening for input, output, , closing, getting full path)

fabric: the laf processor itself

6.4 Node order

There is an implicit partial order on nodes, derived from their attachment to regions which are stretches of primary
data, and the primary data is totally ordered. The order we use in LAF-Fabric is defined as follows.

Suppose we compare node A and node B. Look up all regions for A and for B and determine the first point of
the first region and the last point of the last region for A and B, and call those points Amin, Amax, Bmin, Bmax
respectively.

Then node A comes before node B if and only if Amin < Bmin or Amin = Bmin and Amax > Bmax.

In other words: if A starts before B, then A becomes before B. If A and B start at the same point, the one that ends
last, counts as the earlier of the two.

If neither A < B nor B < A then the order is not specified. LAF-Fabric will select an arbitrary but consistent order
between thoses nodes. The only way this can happen is when A and B start and end at the same point. Between
those points they might be very different.

This order, while not perfect, is the standard order that LAF-Fabric applies to the nodes. The nice property of this
ordering is that if a set of nodes consists of a proper hierarchy with respect to embedding, the order specifies a
walk through the nodes were enclosing nodes come first, and embedded children come in the order dictated by the
primary data. If two nodes start and end at the same place in the primary data, only extra knowledge can decide
which embeds which.

A particularly nasty case are nodes that link to a zero-width region in the primary data. How should they be
ordered with respect to neighbouring nodes? Is the empty one embedded in its right neighbour, or its left one,
or in both, or in neither? All possibilities make sense without further knowledge. LAF-Fabric’s default ordering
places empty nodes after all nodes that start at the same place.

So, LAF-Fabric may not able to order the nodes according to all of your intuitions, because the explicit information
in a LAF resource may not completely model those intuitions.

Yet, if you have a particular LAF resource and a method to order the nodes in a more satisfying manner, you can
supply a module in which you implement that order. You can then tell LAF-Fabric to override its default order by
the custom one. See Extra data preparation.

6.5 LAF API

Here is a description of the API elements as returned by the API() call.

6.5.1 F, FE, F_all, FE_all (Features)

Examples:

F.otype.v(node)

FE.mother.v(edge)

F.gn.s()

F.gn.s(value='feminine')

34 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

all_node_features = API['F_all']
all_edge_features = API['FE_all']

All that you want to know about features and are not afraid to ask.

F is an object, and for each node feature that you have declared, it has a member with a handy name. Likewise for
FE, but now for edge features.

F.etcbc4_db_otype is a feature object that corresponds with the LAF feature given in an annotation in the
annotation space etcbc4, with label db and name otype.

FE.etcbc4_ft_mother is also a feature object, but now on an edge, and corresponding with an empty anno-
tation.

You can also leave out the namespace and the label, so the following are also valid:

F.db_otype or even F.otype. And also: FE.mother. However, if the feature name is empty, you cannot
leave out the label: FE. is not valid.

When there is ambiguity, you will get a warning when the features are requested, from which it will be clear to
what features the ambiguous abbreviated forms refer. In other to use the other possibilities, use the more expanded
names.

If a node or edge is annotated by an empty annotation, we do not have real features, but still there is an annotation
label and an annotation space. In such cases we leave the feature name empty. The values of such annotations are
always the empty string.

You can look up feature values by calling the method v(«node/edge») on feature objects. Here
«node/edge» is an integer denoting the node or edge you want the feature value of.

Note: In LAF-Fabric, nodes and edges are not data structures, they are integers. So they are their own IDs. All
data about nodes exists in other global tables: how nodes are attached to regions, how nodes are connected to each
other by edges, and the values nodes and edges carry for each of the features.

Alternatively, you can use the slightly more verbose alternative forms:

F.item['otype'].v(node)
FE.item['mother'].v(edge)

They give exactly the same result: F.otype is the same thing as F.item[’otype’] provided the feature has
been loaded.

The advantage of the alternative form is that the feature is specified by a string instead of a method name. That
means that you can work with dynamically computed feature names. All abbrevitions that are valid as method
name, are also valid as key in the F.item dictionary.

You can use features to define sets in an easy manner. The s() method yields an iterator that iterates over all
nodes for which the feature in question has a defined value. For the order of nodes, see Node order.

If a value is passed to s(), only those nodes are visited that have that value for the feature in question.

The F_all and FE_all list all features that are loadable. These are the features found in the compiled current
source or in the compiled current annox.

Main source and annox

If you have loaded an extra annotation package (annox), each feature value is looked up first according to the
data of the annox, and only if that fails, according to the main source. The s() method combines all relevant
information.

6.5.2 C, Ci (Connectivity)

Examples:

A. Normal edge features:

6.5. LAF API 35



LAF Fabric Documentation, Release 4.5.3

target_node in C.feature.v(source_node)
(target_node, value) in C.feature.vv(source_node)
target_nodes in C.feature.endnodes(source_nodes, value='val')

source_node in Ci.feature.v(target_node)
(source_node, value) in Ci.feature.vv(target_node)
source_nodes in Ci.feature.endnodes(target_nodes, value='val')

B. Special edge features:

target_node in C.laf__x.v(source_node)
target_node in C.laf__y.v(source_node)

source_node in Ci.laf__x.v(target_node)
source_node in Ci.laf__y.v(target_node)

C. Sorting the results:

target_node in C.feature.v(source_node, sort=True)
(target_node, value) in C.feature.vvs(source_node, sort=True)
target_nodes in C.feature.endnodes(source_nodes, value='val', sort=True)

D. Existence of edges:

if C.feature.e(node): has_outgoing = True # there is an outgoing edge from node carrying feature
if Ci.feature.e(node): has_incoming = True # there is an incoming edge to node carrying feature

(the methods vv and endnodes are also valid for the special features.

Ad A. Normal edge features

This is the connectivity of nodes by edges. C and Ci are objects that specify completely how you can walk from
one node to another by means of edges.

For each edge-feature that you have declared, it has a member with a handy name, exactly as in the FE object.

C.feature is a connection table based on the edge-feature named feature.

Such a table yields for each node node1 a list of pairs (node2, val) for which there is an edge going from
node1 to node2, annotated by this feature with value val.

This is what the vv() methods yields as a generator.

If you are not interested in the actual values, there is a simpler generator v(), yielding the list of only the nodes.
If there are multiple edges with several values going from node1 to node2, node2 will be yielded only once.

If you want to travel onwards until there are no outgoing edges left that qualify, use the method endnodes().

For all this functionality there is also a version that uses the opposite edge direction. Use Ci instead of C.

If you have loaded an extra annotation package (annox), lookups are first performed with the data from the annox,
and only if that fails, from the main source. All relevant data will be combined.

Ad B. Special edge features

There may be edges that are completely unannotated. These edges are made available through the special C and
Ci members called laf__x. (Annotation namespace laf, no annotation label, name ’x’.)

If you have loaded an annox, it may have annotated formerly unannotated edges. However, this will not influence
the laf__x feature.

laf__x always corresponds to the unannotated edges in the main source, irrespective of any annox whatsoever.

But loading an annox introduces an other special edge feature: laf__y: all edges that have been annotated by
the annox.

In your script you can compute what the unannotated edges are according to the combination of main source and
annox. It is all the edges that you get with laf__x, minus those yielded by laf__y.

36 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

Think of x as excluded from annotations, and y as yes annotations.

Ad C. Sorting the results

The results of the v and vv methods are unordered, unless sort=True is passed. In that case, the results are
ordered in the standard ordering or in the custom ordering if you have loaded a prepared ordering.

See the example notebook trees for working code with connectivity.

Ad D. Existence of edges

If you want to merely check whether a node has outgoing edges with a certain annotated feature, you can use the
direct method e(node). This is much faster than using the v(node) mode, since the e() method builds less
data structures.

General remark All methods of C and Ci objects that deliver multiple results, yield them one by one as iterators.

6.5.3 BF (Before)

Examples:

if BF(nodea, nodeb) == None:
# code for the case that nodea and nodeb do not have a mutual order

elif BF(nodea, nodeb):
# code for the case that nodea comes before nodeb

else:
# code for the case that nodea comes after nodeb

With this function you can do an easy check on the order of nodes. The BF() ordering orders the nodes as NN()
does, but it indicates when two nodes cannot be ordered. There is no mutual order between two nodes if at least
one of the following holds:

• at least one of them is not linked to the primary data

• both start and end at the same point in the primary data (what happens in between is immaterial).

BF(n,m) yields True if n comes before m, False if m comes before n, and None if none of these is the case.

Note: The BF() ordering is not influenced by an additional ordering that you might have added to LAF-Fabric
by data preparation. So even if you have loaded a more complete ordering, you still can analyse for which pairs
of nodes the extra ordering introduces extra order.

6.5.4 EE (Next Edge)

Examples:

(a0) for edge in EE():
pass

EE() walks through edges, in unspecified order. It yields for every edge a tuple (id, from, to), where id is the
identifier of the edge (an integer), and from and to are the nodes from which and to which the edge goes. These
nodes are specified by their node identifiers (integers).

6.5.5 NN (Next Node)

Examples:

(a0) for node in NN():
pass

(a1) for node in NN(nodes=nodeset):
pass

6.5. LAF API 37

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees_etcbc4.ipynb


LAF Fabric Documentation, Release 4.5.3

(a2) for node in NN(nodes=nodeset, extrakey=your_order):
pass

(b) for node in NN(test=F.otype.v, value='book'):
pass

(c) for node in NN(test=F.book.v, values=['Isaiah', 'Psalms']):
pass

(d) for node in NN(
test=F.otype.v,
values=['phrase', 'word'],
extrakey=lambda x: F.otype.v(x) == 'phrase',

):
pass

NN() walks through nodes, not by edges, but through a predefined set, in the natural order given by the primary
data (see Node order). Only nodes that are linked to a region (one or more) of the primary data are being walked.
You can walk all nodes, or just a given set.

It is an iterator that yields a new node everytime it is called.

All arguments are optional. They mean the following, if present.

• test: A filter that tests whether nodes are passed through or inhibited. It should be a callable with one
argument and return some value;

• value: string

• values: an iterable of strings.

test will be called for each passing node, and if the value returned is not in the set given by value and/or
values, the node will be skipped. If neither value or values are provided, the node will be passed if and
only if test returns a true value.

• nodes: this will limit the set of nodes that are visited to the given value, which must be an iterable of nodes.
Before yielding nodes, NN(nodes=nodeset) will order the nodes according to the standard ordering,
and if you have provided an extra, prepared ordering, this ordering will be taken instead.

The nodes argument is compatible with all other arguments.

Note: nodelist = NN(nodes=nodeset) is a practical way to get the nodeset in the right order. If your
program works a lot with nodeset, and then needs to produce orderly output, this is your method. If you have
a custom ordering defined in your task, you can apply it to arbitrary node sets via NN(nodes=nodeset,
extrakey=your_order).

Alternatively, you can say: nodelist = sorted(nodeset, key=NK). See the API element NK.

Example (a) iterates through all nodes, (a1) only through the nodes in nodeset, (a2) idem, but applies an extra
ordering beforehand, (b) only through the book nodes, because test is the feature value lookup function associated
with the otype function, which gives for each node its type.

Note: The type of a node is not a LAF concept, but a concept in this particular LAF resource. There are
annotations which give the feature otype to nodes, stating that nodes are books, chapters, words, phrases, and so
on.

In example (c) you can give multiple values for which you want the corresponding nodes.

Example (d) passes an extra sort key. The set of nodes is sorted on the basis of how they are anchored to the
primary data. Left comes before right, embedding comes before embedded. But there are many cases where this
order is not defined, namely between nodes that start at the same point and end at the same point.

If you have extra information to order these cases, you can do so by passing extrakey. In this case the extrakey
is False for nodes with carry a certain feature with value phrase, and True for the other nodes, which carry

38 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

value word for that feature. Because False comes before True, the phrases come before the words they contain.

Note: Without extrakey, all nodes that have not identical start and end points have already the property that they
are yielded in the proper mutual order. The difficulty is where the BF method above yields None. It is exactly
these cases that are remedied with extrakey. The rest of the order remains untouched.

Caution: Ordering the nodes with extrakey is costly, it may take several seconds. The etcbc module comes
with a method to compute this ordering once and for all. This supplementary data can easilyand quickly be
loaded, and then you do not have to bother about extrakey anymore. See Extra data preparation.

Note: You can invoke a supplementary module of your choice to make the ordering more complete. See the
section on extra data preparation below.

See next_node() in laf.fabric.

6.5.6 NK (node sort key)

Example:

nodelist = sorted(nodeset, key=NK)

This can be passed as a sort key for node sets. It corresponds with the “natural order” on nodes. If an additional
module, such as etcbc.preprocess has modified the natural order, this sort key will reflect the modified order. If
you let NN() yield nodes, they appear in this same order.

6.5.7 MK (anchor set sort key)

Example:

anchorsets = sorted(anchorsets, key=MK)

This can be passed as a sort key for anchor sets. It corresponds with the “natural order” on anchor sets, which is:
Let sa and sb are two anchor sets.

If sa is a proper subset of sb then sb comes before sa and vice versa.

Otherwise, if sa and sb are not equal, the one that has the smallest element not occurring in the other comes first.

6.5.8 NE (Next Event)

Examples:

for (anchor, events) in NE():
for (node, kind) in events:

if kind == 3:
'''close node event'''

elif kind == 2:
'''suspend node event'''

elif kind == 1:
'''resume node event'''

elif kind == 0:
'''start node event'''

for (anchor, events) in NE(key=filter):
for (anchor, events) in NE(simplify=filter):
for (anchor, events) in NE(key=filter1, simplify=filter2):

6.5. LAF API 39



LAF Fabric Documentation, Release 4.5.3

‘‘NE()‘‘ is only available if you have specified in the *load* directives: ‘‘primary: True‘‘.

NE() walks through the primary data, or, more precisely, through the anchor positions where something happens
with the nodes.

It is an iterator that yields the set of events for the next anchor that has events everytime it is called. It will return
a pair, consisting of the anchor position and a list of events.

See next_event() in laf.fabric.

What can happen is that a node starts, resumes, suspends or ends at a certain anchor position. This things are
called node_events.

start The start anchor of the first range that the node is linked to

resume The start anchor of any non-first range that the node is linked to

suspend The end anchor of any non-last range that the node is linked to

end The end anchor of the last range that the node is linked to

The events for each anchored are are ordered according to the primary data order of nodes, see Node order, where
for events of the kind suspend and end the order is reversed.

Caution: While the notion of node event is quite natural and intuitive, there are subtle difficulties. It all has
to do with embedding, gaps and empty nodes. If your nodes link to portions of primary data with gaps, and if
some nodes link to points in de primary data (rather than stretches), then the node events generated by NE()
will in general not completely ordered as desired. You should consider using more explicit information in your
data about embedding, such as edges between nodes. If not, you have to code intricate event reordering in your
notebook.

Note: For non-empty nodes (i.e. nodes linked to at least one region with a distinct start and end anchor), this
works out nicely. At any anchor the closing events are before the opening events. However, an empty node would
close before all other closing events at that node, and open after all other opening events at that node. It would
close before it would open. That is why we treat empty nodes differently: their open-close events are placed
between the list of close events of other nodes and the list of open events of other nodes.

Note: The embedding of empty nodes is hard to define without further knowledge. Are two empty nodes at the
same anchor position embedded in each other or not? Is an empty node embedded in a node that opens or close at
the same anchor? We choose a minimalistic interpretation: multiple embedded nodes at the same anchor are not
embedded in each other, and are not embedded in nodes that open or close at the same anchor.

The consequence of this ordering is that if the nodes correspond to a tree structure, the node events correspond
precisely with the tree structure. You can use the events to generate start and end tags for each node and you get a
properly nested representation.

Note however, that if two nodes have the same set of ranges, it is impossible to say which embeds which.

You can, however, pass a key=filter argument to NE(). Before a node event is generated for a node, filter will be
applied to it. If the outcome is None, the events for this node will be skipped, the consumer of events will not see
them. If the outcome is not None, the value will be used as a sort key for additional sorting.

The events are already sorted fairly good, but only those node events that have the same kind and corresponds to
nodes with the same start and end point, may occur in an undesirable order. By assigning a key, you can remedy
that. The key will be used in inversed order for opening/resume events, and in normal order for close/suspend
events.

For example, if you pass a filter as key that assigns to nodes that correspond to sentences the number 5, and to
nodes that correspond to clauses the number 4, then the following happens.

Whenever there is a sentence that coincides with a clause, then the sentence-open event will occur before the
clause-open event, and the clause-close before the sentence-close.

Note: The ordering induced by key=filter is also applied to multiple empty nodes at the same anchor. Without the

40 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

ordering, they are not embedded in each other, but the ordering may embed some empty nodes in other ones. This
additional ordering will not reorder events for empty nodes with those of enclosing non-empty nodes, because it
is impossible to tell whether an empty node is embedded in a node that is closing at this point or at a node that is
opening at this point.

If there are many regions in the primary data that are not inside regions or in regions that are not linked to nodes,
or in regions not linked to relevant nodes, it may bethe case that many relevant nodes get interrupted around these
gaps. That will cause many spurious suspend-resume pairs of events. It is possible to suppress those.

Example: suppose that all white space is not linked to nodes, and suppose that sentences and clauses are linked to
their individual words. Then they become interrupted at each word.

If you pass the simplify=filter argument to NE() the following will happen. First of all: a gap is now a stretch of
primary data that does not occur between the start and end position of any node for which the filter is not None.

In our example of sentences and clauses: suppose that a verse is linked to the continuous regions of all its material,
including white space. Suppose that by our key=filter1 argument we are interested in sentences, clauses and verses.
With respect to this set, the white spaces are no gaps, because they occur in the verses.

But if we give a simplify=filter2 that only admits sentences and clauses, then the white spaces become true gaps.
And NE(simplify=filter2) will actively weed out all node-suspend, node-resume pairs around true gaps.

Even if the nodes do not correspond with a tree, the order of the node events correspond to an intuitive way to
mark the embedding of nodes.

Note that we do not say region but range. LAF-Fabric has converted the region-linking of nodes by range-linking.
The range list of a node is a sequence of maximal, non-overlapping pieces of primary data in primary data order.

Consequently, if a node suspends at an anchor, it will not resume at that anchor, so the node has a real gap at that
anchor.

Formally, a node event is a tuple (node, kind) where kind is 0, 1, ,2, or 3, meaning start, resume, suspend,
end respectively.

6.5.9 X, XE (XML Identifiers)

Examples:

X.r(i)
X.i(x)
XE.r(i)
XE.i(x)

If you need to convert the integers that identify nodes and edges in the compiled data back to their original XML
identifiers, you can do that with the X object for nodes and the XE object for edges.

Both have two methods, corresponding to the direction of the translation: with i(«xml id») you get the
corresponding number of a node/edge, and with r(«number») you get the original XML id by which the
node/edge was identified in the LAF resource.

6.5.10 P (Primary Data)

Examples:

P.data(node)

The primary data is only available if you have specified in the *load* directives: ‘‘primary: True‘‘.

Your gateway to the primary data. For nodes node that are linked to the primary data by one or more regions,
P.data(node) yields a set of chunks of primary data, corresponding with those regions.

The chunks are maximal, non-overlapping, ordered according to the primary data.

6.5. LAF API 41



LAF Fabric Documentation, Release 4.5.3

Every chunk is given as a tuple (pos, text), where pos is the position in the primary data where the start of text can
be found, and text is the chunk of actual text that is specified by the region.

Caution: Note that text may be empty. This happens in cases where the region is not a true interval but merely
a point between two characters.

6.5.11 Input and Output

Examples:

data_dir
output_dir
out_handle = outfile('output.txt')
in_handle = infile('input.txt')
file_path = my_file('thefile.txt')
close()

msg(text)
msg(text, verbose='ERROR')
msg(text, newline=False)
msg(text, withtime=False)

data_dir is the top-level directory where all input data (laf resources, extra annotation files) reside.

output_dir is the top-level directory where all task output data is collected.

You can create an output filehandle, open for writing, by calling the outfile() method and assigning the result
to a variable, say out_handle.

From then on you can write output simply by saying:

out_handle.write(text)

You can create as many output handles as you like in this way. All these files end up in the task specific working
directory.

Likewise, you can place additional input files in that directory, and read them by saying:

text = in_handle.read()

You can have LAF-Fabric close them all by means of close() without arguments.

If you want to refer in your notebook, outside the LAF-Fabric context, to files in the task-specific working direc-
tory, you can do so by saying:

full_path = my_file('thefile.txt')

The method my_file prepends the full directory path in front of the file name. It does not check whether the file
exists.

You can issue progress messages while executing your task. These messages go to the output of a code cell.

You can adjust the verbosity level of messages, see above for possible values.

These messages get the elapsed time prepended, unless you say withtime=False.

A newline will be appended, unless you say newline=False.

The elapsed time is reckoned from the start of the task, but after all the task-specific loading of features.

6.5.12 fabric

You also have access to the laf processor itself, by means of the fabric key in the API.

42 Chapter 6. API Reference



LAF Fabric Documentation, Release 4.5.3

Here are some useful methods.

resolve_feature

Example:

fabric.resolve_feature('node', 'otype')
fabric.resolve_feature('node', 'db.otype')
fabric.resolve_feature('node', 'etcbc4:db.otype')

Resolves incomplete and complete feature names. Raises FabricError if there is no resolution in the current
resource. If there are resolutions, delivers the last one found, in the form of a tuple (namespace, label, feature
name). If there aremultiple resolutions, lists all the candidates and tells which one has been chosen.

6.6 Extra data preparation

Caution: This section is meant for developers of extra modules on top of LAF-Fabric

LAF-Fabric admits other modules to precompute data to which it should be pointed. See
:doc:etcbc-reference for an example.

6.6. Extra data preparation 43



LAF Fabric Documentation, Release 4.5.3

44 Chapter 6. API Reference



CHAPTER 7

ETCBC Reference

7.1 What is ETCBC

The etcbc package has modules that go beyond laf. They utilize extra knowledge of the specific LAF resource
which is the ETCBC Hebrew Text Database. They make available a better ordering of nodes, add more ways
of querying the data, and ways of creating new annotations. There is also a solution for the problem of getting
relevant context around a node. For example, if you do a walk through phrases, you want to be able to the clauses
that contain the phrases that you iterate over, or to siblings of it.

Most of the functionality is demonstrated in dedicated notebooks. This text is only a rough overview.

7.2 Layers

The L (layer) part of the API enables you to find objects that are embedded in other objects and vice versa. It makes
use of the ETCBC object types book, chapter, verse, half_verse, sentence, sentence_atom,
clause, clause_atom, phrase, phrase_atom, subphrase, word. An object of a certain type may
contain objects of types following it, and is contained by objects of type preceding it.

By means of L you can go from an object to any object that contains it, and you can get lists of objects contained
in it. This is how it works. You have to import the prepare module:

from etcbc.preprocess import prepare

and say in your load instructions:

``'prepare': prepare``

Then you can use the following functions:

L.u(otype, node)
L.d(otype, node)
L.p(otype, book='Genesis', chapter=21, verse=3, sentence=1, clause=1, phrase=1)

L.u (up in the hierarchy) gives you the object of type otype that contains node (in the ETCBC data there is at
most one such an object). If there is no such object, it returns None.

L.d (down in the hierarchy) gives you all objects of type otype that are contained in node as a list in the natural
order. If there are no such objects you get None.

L.p (passage nodes) give you all objects of type otype that are contained in the nodes selected by the other
arguments. All other arguments are optional. So if you leave out the sentence clause phrase arguments,
you get all nodes in a specific verse. If you leave out the book chapter verse arguments, and leave the
others at 1, you get the nodes in all first phrases of first clauses of first sentences of all verses of all chapters of all
books.

Examples (if phr is a node with object type phrase):

45



LAF Fabric Documentation, Release 4.5.3

b = L.u('book', phr) # the book node in which the node occurs
F.book.v(b) # the name of that book

b = F.code.v(L.u('clause_atom', phr)) # the *clause_atom_relationship* of the clause_atom of which the phrase is a part

It is now easy to get the full text contained in any object, e.g. the phrase phr:

''.join('{}{}'.format(F.g_word_utf8.v(w), F.trailer_utf8.v(w)) for w in L.d(phr))

Conversely, it is easy to get all subphrases in a given verse:

subphrases = L.p('subphrase', book='Exodus', chapter=5, verse=10)

or get all clause_atoms of all first sentences of all second verses of all chapters in Genesis:

clause_atoms = L.p('clause_atom', book='Genesis', verse=2, sentence=1)

7.3 Node order

The module etcbc.preprocess takes care of preparing a table that codes the optimal node order for working
with ETCBC data.

It orders the nodes in a way that combines the left-right ordering with the embedding ordering. Left comes before
right, and the embedder comes before the embedded.

More precisely: if we want to order node a and b, consider their monad sets ma and mb, and their object types
ta and tb. The object types have ranks, going from a low rank for books, to higher ranks for chapters, verses,
half_verses, sentences, sentence_atoms, clauses, clause_atoms, phrases, phrase_atoms, subphrases and words.

In the ETCBC data every node has a non-empty set of monads.

If ma is equal to mb and ta is equal to tb, then a and b have the same object type, and cover the same monads, and
in the etcbc that implies that a and b are the same node.

If ma is equal to mb, then if ta is less than tb, a comes before b and vice versa.

If ma is a proper subset of mb, then a comes after b, and vice versa.

If none of the previous conditions hold, then ma has monads not belonging to mb and vice versa. Consider the
smallest monads of both difference sets: mma = min(ma-mb) and mmb = min(mb-ma). If mma < mmb then a
comes before b and vice versa. Note that mma cannot be equal to mmb.

Back to your notebook. Say:

from etcbc.preprocess import prepare

processor.load('your source', '--', 'your task',
{

"xmlids": {"node": False, "edge": False},
"features": { ... your features ...},
"prepare": prepare,

}
)

then the following will happen:

• LAF-Fabric checks whether certain data files that define the order between nodes exist next to the binary
compiled data, and whether these files are newer than your module preprocess.py.

• If so, it loads these data files quickly from disk.

• If not, it will compute the node order and write them to disk. This may take some time! Then it replaces the
dumb standard ordering by the smart ETCBC ordering.

46 Chapter 7. ETCBC Reference



LAF Fabric Documentation, Release 4.5.3

• Likewise, it looks for computed files with the embedding relationship, and computes them if necessary. This
takes even more time!

This data is only loaded if you have done an import like this:

from etcbc.preprocess import prepare

and if you have:

'prepare': prepare

in your load instructions,

7.4 Transcription

7.4.1 Hebrew

The ETCBC has a special way to transcribe Hebrew characters into latin characters. Sometimes it is handier to
work with transcriptions, because some applications do not render texts with mixed writing directions well.

In etcbc.lib there is a conversion tool. This is how it works:

from etcbc.lib import Transcription

tr = Transcription()

t = 'DAF DAC'
h = tr.to_hebrew(t)
tb = tr.from_hebrew(h)

print("{}\n{}\n{}".format(t, h, tb))

to_hebrew(word)maps from transcription to Hebrew characters, from_hebrew(word) does the opposite.

There are some points to note:

• if characters to be mapped are not in the domain of the mapping, they will be left unchanged.

• there are two versions of the shin, each consists of two combined unicode characters. Before applying
the mappings, these characters will be combined into a single character. After applying the mapping
hebrew(), these characters will be always decomposed.

• up till now we have only transcription conversions for consonantal Hebrew.

7.4.2 Syriac

We have a transcription for consonantal Syriac. The interface is nearly the same as for Hebrew, but now use:

to_syriac(word)
from_syriac(word)

7.5 Trees

The module etcbc.trees gives you several relationships between nodes: parent, children, sisters, and elder_sister.:

from etcbc.trees import Tree

tree = Tree(API, otypes=('sentence', 'clause', 'phrase', 'subphrase', 'word'),
clause_type='clause',
ccr_feature='rela',

7.4. Transcription 47



LAF Fabric Documentation, Release 4.5.3

pt_feature='typ',
pos_feature='sp',
mother_feature = 'mother',

)
ccr_class = {

'Adju': 'r',
'Attr': 'r',
'Cmpl': 'r',
'CoVo': 'n',
'Coor': 'x',
'Objc': 'r',
'PrAd': 'r',
'PreC': 'r',
'Resu': 'n',
'RgRc': 'r',
'Spec': 'r',
'Subj': 'r',
'NA': 'n',

}

tree.restructure_clauses(ccr_class)

results = tree.relations()
parent = results['rparent']
sisters = results['sisters']
children = results['rchildren']
elder_sister = results['elder_sister']

When the Tree object is constructed, the monadset-embedding relations that exist between the relevant objects,
will be used to construct a tree. A node is a parent of another node, which is then a child of that parent, if the
monad set of the child is contained in the monad set of the parent, and if there are not intermediate nodes (with
respect to embedding) between the parent and the child. So this parent relationship defines a tree, and the children
relationship is just the inverse of the parent relationship. Every node has at most 1 parent, but nodes may have
multiple children. If two nodes have the same monad set, then the object type of the nodes determines if one is a
parent and which one that is. A sentence can be parent of a phrase, but not vice versa.

It can not be the case that two nodes have the same monad set and the same object type.

You can customize your trees a little bit, by declaring a list of object types that you want to consider. Only nodes
of thos object types will enter in the parent and children relationships. You should specify the types corresponding
to the ranking of object types that you want to use. If you do not specify anything, all available nodes will be used
and the ranking is the default ranking, given in etcbc.lib.object_rank.

There is something curious going on with the mother relationship, i.e. the relationship that links on object to an-
other on which it is linguistically dependent. In the trees just constructed, the mother relationship is not honoured,
and so we miss several kinds of linguistic embeddings.

The function restructure_clauses() remedies this. If you want to see what it going on, consult the
trees_etcbc4 notebook.

7.6 Annotating

The module etcbc.annotating helps you to generate data entry forms and translate filled in forms into new
annotations in LAF format, that actually refer to nodes and edges in the main ETCBC data source.

There is an example notebook that uses this module for incorporating extra data (coming from so-called px files)
into the LAF resource. See Extra Data below.

48 Chapter 7. ETCBC Reference

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/trees/trees_etcbc4.ipynb


LAF Fabric Documentation, Release 4.5.3

7.7 Extra Data

The ETCBC data exists in so-called px files, from which the EMDROS databases are generated. Some px data did
not made it too EMDROS, hence this data does not show up in LAF. Yet there might be useful data in the px. The
module etcbc.extra helps to pull that data in, and delivers it in the form of an extra annotation package.

You can also use this module to add other kinds of data. You only need to write a function that delivers the data in
the right form, and then extra turns it into a valid annotation set.

Usage:

from etcbc.extra import ExtraData

More info: notebook para from px

7.8 Feature documentation

The module etcbc.featuredoc generates overviews of all available features in the main source, including
information of their values, how frequently they occur, how many times they are filled in with (un)defined values.
It can also look up examples in the main data source for you.

Usage:

from etcbc.featuredoc import FeatureDoc

More info: notebook feature-doc

7.9 MQL

The module etcbc.mql lets you fire mql queries to the corresponding Emdros database, and process the results
with LAF-Fabric. More info over what MQL, EMDROS are, and how to use it, is in notebook mql.

On the Mac and in Linux it runs out of the box, assuming Emdros is installed in such a way that the command to
run MQL is /usr/local/bin/mql. If that is not the case, or if you work on windows, you should manually
change the first line of mql.py. Its default value is:

MQL_PROC = '/usr/local/bin/mql'

and on windows is should become something like:

MQL_PROC = 'c:\\Program Files (x86)\\Emdros\\Emdros 3.4.0\\bin\\mql'

(check your system). After modifying this file, you should go to your laf-fabric directory and run again:

python setup.py install

Regrattably, this must be repeated when you update laf-fabric from Github.

7.7. Extra Data 49

http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/extradata/para%20from%20px.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/featuredoc/feature-doc.ipynb
http://nbviewer.ipython.org/github/ETCBC/laf-fabric-nbs/blob/master/querying/mql.ipynb


LAF Fabric Documentation, Release 4.5.3

50 Chapter 7. ETCBC Reference



CHAPTER 8

EMDROS2LAF reference

8.1 Description

EMDROS2LAF is a package that can convert EMDROS databases into LAF resources. It is assumed that the
EMDROS database is organized in the ETCBC way.

8.2 Usage

There is an example script in the top level laf-fabric directory, called lf-convert.py. It can be called as follows:

python lf-convert.py [--raw] [--validate] [--fdecls-only] --source source --parts [Part]*

where * source is the name of a data source, corresponding to a subdirectory of the laf-fabric-data directory, *
and part is monad, section, lingo, all, none.

Transforms the ETCBC database into a LAF resource. Because of file sizes, not all annotations are stored in
one file. There are several parts of annotations: monads (words), sections (books, chapters, verses, etc), lingo
(sentence, phrase, etc)

If –raw is given , a fesh export from the EMDROS database is made. For each part there is a separate export.

If –validate is given, generated xml files will be validated against their schemas.

If –fdecls-only is given, only the feature declaration file is generated.

51

http://emdros.org


LAF Fabric Documentation, Release 4.5.3

The conversion is driven by a feature specification file. This file contains all information about objects, features
and values that the program needs. The division into parts, but also the mapping to ISOcat is given in this file.

8.3 Input

The main input for the program is an EMDROS database, from which data will be exported by means of MQL
queries. For every part (monad, section, lingo) an mql query file is generated, and this query is run against the
database. The result is a plain text file (unicode utf8) per part.

8.4 Output

This is what the program generates:

The main output are annotation files plus a primary data file. And there are descriptive headers. The primary data
file is a plain text file (unicode utf8) containing the complete underlying text of the database in question. There is
some chunking into books, chapters and verses, only by means of newlines. No section indications occur in the
primary text. This file is obtained from a few text-carrying features present in the database.

Annotation files are xml files that describe regions of in the primary data, and properties of those regions. Anno-
tations are the translation of the ETCBC objects and features. Annotation files start with header information.

There are several header files, one for the LAF resource as a whole, one for the primary data file, and one for
linking the object types and features to descriptions in the ISOcat registry.

All generated XML files will be validated against their schemas by means of xmllint.

8.5 Definitions

The conversion process is defined by a substantial amount of information outside the program. This information
comes in the form of a main configuration file, a feature definition file, a bunch of templates, and several XML
schemas.

The main config files specifies file locations, the version of the text database, and the location of the ISOcat
registry. The feature definition file is a big list of object types, their associated features with their enumerated
values plus the ISOcat correspondences of it all. It also chunks the LAF materials to be generated into a monad,
section and lingo part, providing even one more layer of subdivisions, in order to keep the resulting xml files
manageable.

8.6 Project

SHEBANQ, funded by CLARIN-NL, 2013-05-01 till 2014-05-01

8.7 See also

There is another package in this distribution, laf, that gives you analytic access to LAF resources, such as the
conversion result of the ETCBC database. And etcbc is a package by which you can integrate working on both the
EMDROS version of the data and the LAF version of the data.

52 Chapter 8. EMDROS2LAF reference



CHAPTER 9

laf 4.5.3

9.1 Submodules

9.2 laf.fabric module

class Bunch
Bases: builtins.object

class LafAPI(names)
Bases: laf.data.LafData

Makes all API methods available. API() returns a dict keyed by mnemonics and valued by API methods.

API()

APIprep()

get_all_features()

class LafFabric(data_dir=None, laf_dir=None, output_dir=None, save=False, verbose=None)
Bases: builtins.object

Process manager.

load(params): given the source, annox and task, loads the data, assembles the API, and returns the API.

load(source, annox, task, load_spec, add=False, compile_main=False, compile_annox=False, ver-
bose=None)

load_again(load_spec, add=False, compile_main=False, compile_annox=False, ver-
bose=None)

resolve_feature(kind, feature_given)

9.3 laf.elements module

class Connection(lafapi, feature, inv)
Bases: builtins.object

Connection info according to an edge feature.

Holds the mapping from nodes to a set of (node, value) pairs for which there is an edge for which this
edge feature has value. Has distinct mappings for main source data and annox data.

v(node) yields the nodes (without the values). vv(node) yields the node/value pairs.
endnodes(nodeset, value=None) yields the set of end nodes after
traveling from ‘‘nodeset along edges (having this feature with this value or any value).

53



LAF Fabric Documentation, Release 4.5.3

e(n)

endnodes(node_set, value=None, sort=False)

v(n, sort=False)

vv(n, sort=False)

class Feature(lafapi, feature, kind)
Bases: builtins.object

Feature data and lookup.

Holds the mapping from nodes/edges to values corresponding to a single feature. Has distinct mappings for
main source data and annox data.

v(node_or_edge) is the lookup method. s(value=None) yields the nodes/edges that have this value
or any value.

V(ne)

s(value=None)

v(ne)

class PrimaryData(lafapi)
Bases: builtins.object

Primary data.

data(node) is a list of chunks of primary data attached to that node. The chunk is delivered as a pair of
the position where the chunk starts and the chunk itself. Empty chunks are possible. Consecutive chunks
have been merged. The chunks appear in primary data order.

data(node)

class XMLid(lafapi, kind)
Bases: builtins.object

Mappings between XML identifiers in original LAF resource and integers identifying nodes and edges in
compiled data.

r(node or edge int) = xml identifier and i(xml identifier) = node or edge
int.

i(xml_id)

r(int_code)

9.4 laf.data module

class LafData
Bases: builtins.object

Manage the compiling and loading of LAF/GraF data.

add_logfile(compile=None)

adjust_all(annox, req_items, add, force)
Load manager.

compile_all(force)

finish_task(show=True)
Close all open files that have been opened by the API

load_all(req_items, prepare, add)

prepare_all(api)

54 Chapter 9. laf 4.5.3



LAF Fabric Documentation, Release 4.5.3

prepare_dirs(annox)

unload_all()

9.5 laf.model module

model(origin, data_items, stamp)
Augment the results of XML parsing by precomputing additional data structures.

normalize_ranges(ranges)

9.6 laf.parse module

class AnnotationHandler(annotation_file, stamp)
Bases: xml.sax.handler.ContentHandler

aid = None

characters(ch)

endElement(name)

file_name = None

nid = None

stamp = None

startElement(name, attrs)

truth = {‘true’: True, ‘yes’: True, ‘0’: False, ‘false’: False, ‘no’: False, ‘1’: True, ‘off’: False, ‘on’: True}

class HeaderHandler
Bases: xml.sax.handler.ContentHandler

characters(ch)

endElement(name)

startElement(name, attrs)

init()

parse(origin, graf_header_file, stamp, data_items)
Parse a LAF/GrAF resource and deliver results.

9.7 laf.names module

exception FabricError(message, stamp, cause=None)
Bases: builtins.Exception

class Names(data_dir, laf_dir, output_dir, save, verbose)
Bases: laf.settings.Settings

Manage the names of compiled LAF data items.

Data items are stored in a dictionary with keys that tell a lot about the kind of data stored under that key.
Keys have the following format:

origin group kind direction ( item )

and item is a comma separated list of a variable number of components, possibly zero.

Group:

9.5. laf.model module 55

http://docs.python.org/3.3/library/xml.sax.handler.html#xml.sax.handler.ContentHandler
http://docs.python.org/3.3/library/xml.sax.handler.html#xml.sax.handler.ContentHandler


LAF Fabric Documentation, Release 4.5.3

•P: primary data items,

•G: items for regions, nodes, edges,

•X: xml identifiers,

•F: features,

•C: connectivity,

•T: temporary during compiling.

Origin: m or a meaning main and annox resp. Indicates the source data. The value z indicates that this data
is not prepared by Laf-Fabric but by auxiliary modules.

Kind: n or e meaning node and edge resp.

Direction: f or b meaning forward and backward resp.

The direction can mean the direction in which edges are followed, or the direction in which a mapping goes.

Components:

Features are items, with three components: (namespace, label, name).

In group P, G, T there are one-component items, such as (edges_from,) and (edges_to).

In group X there is only one item, and it has no components: ().

For each data item we have to know the conditions under which it has to be loaded and its data type.

The condition is a key in a dictionary of conditions. The loader determines the condition dictionary by
filling in its slots with relevant components.

The data type is either array, or dict, or string.

Class methods The class methods comp and decomp and decompfull take care of the composition and
decomposition of keys in meaningful bits.

Instance data and methods The instance data contains a list of datakeys, adapted to the present environ-
ment, which is based on the source, annox and task chosen by the user. The previous list is also remembered,
so that the loader can load/unload the difference.

The instance method request_files determines the difference between previously and presently re-
quested data items. It uses an instance method dinfo that provides all relevant information associated with
a datakey, including the location and name of the corresponding data file on disk. This method is an instance
method because it needs values from the current environment.

DCOMP_SEP = ‘,’

E_ANNOT_NON = (‘laf’, ‘’, ‘x’)

E_ANNOT_YES = (‘laf’, ‘’, ‘y’)

apiname(dcomps)

check_load_spec(load_spec, stamp)

comp(dkeymin, dcomps)

comp_file(dgroup, dkind, ddir, dcomps)

decomp(dkey)

decomp_full(dkey)

deliver(computed_data, dest, data_items)

dinfo(dkey)

dmsg(dkey)

kind_types = {False, True}

load_spec_keys = {‘xmlids’, ‘features’, ‘primary’, ‘prepare’}

56 Chapter 9. laf 4.5.3



LAF Fabric Documentation, Release 4.5.3

load_spec_subkeys = {‘node’, ‘edge’}

orig_key(dkey)

query(dorigin=None, dgroup=None)

request_files(req_items, prepare_dict)

request_init(req_items)

9.8 laf.settings module

class Settings(data_dir, laf_dir, output_dir, save, verbose)
Bases: builtins.object

Manage the configuration.

The directory structure is built as a set of names in an environment dictionary. The method setenv builds
a new structure based on user choices. Local settings can be passed as arguments to object creation, or in a
config file in the current directory, or in a config file in the user’s home directory. It is possible to save these
settings in the latter config file.

setenv(source=None, annox=None, task=None, zspace=None)

9.9 laf.timestamp module

class Timestamp(log_file=None, verbose=None)
Bases: builtins.object

Timed progress messages.

There are specialized methods for distinct verbosity levels: Emsg, Wmsg etc. With set_verbose you
can set the verbosity of the application. Only messages with that verbosity level of lower will reach the
output. You can suppress the time indication and the newline at the end.

raw_msg has complete flexibility. This method is exposed as msg in the API.

Dmsg(msg, newline=True, withtime=True)

Emsg(msg, newline=True, withtime=True)

Imsg(msg, newline=True, withtime=True)

Nmsg(msg, newline=True, withtime=True)

Wmsg(msg, newline=True, withtime=True)

Xmsg(msg, newline=True, withtime=True)

connect_log(log_file)

disconnect_log()

raw_msg(msg, newline=True, withtime=True, verbose=None)

reset()

set_verbose(verbose)

verbose_level = OrderedDict([(‘SILENT’, -10), (‘ERROR’, -3), (‘WARNING’, -2), (‘INFO’, -1), (‘NORMAL’, 0), (‘DETAIL’, 1), (‘DEBUG’, 10)])

9.8. laf.settings module 57



LAF Fabric Documentation, Release 4.5.3

9.10 laf.lib module

arrayify(source_list)

grouper(iterable, n, fillvalue=None)
Collect data into fixed-length chunks or blocks

grouper([1,2,3,4,5], 2, 0) –> [1,2] [3,4] [5,0]

make_array_inverse(arraylist)

make_inverse(mapping)

58 Chapter 9. laf 4.5.3



CHAPTER 10

etcbc 4.5.3

10.1 Submodules

10.2 etcbc.preprocess module

fill(NN, F, er, ed)

getmonads(attr)

node_down(API)

node_order(API)

node_order_inv(API)

node_ud(API)

node_up(API)

prep_post(lafapi)

10.3 etcbc.annotating module

class GenForm(API, form_name, config)
Bases: builtins.object

Generates input forms for new annotations and creates new annotations based on filled in forms.

Upon creation, takes in the config information for a new form.

Args:

API(object): the API object of the LAF processor, so that the form creator can use its methods for
creating files and issuing messages and accessing features.

form_name(string): the base name of the form to be created

config(dict): which nodes and feature data to fill the form with, which new feature columns to make.

make_annots()
Converts a filled in form into a set of new annotations.

make_form()
Creates a form based on the information passed when creating this object.

create_annots(API, data)
Converts a list of node, value,feature entries to a string which can be saved as an annotation file.

The columns must be: nodeid, value, feature name, feature_label (optional), namespace (optional)

59



LAF Fabric Documentation, Release 4.5.3

nonerep(val)

10.4 etcbc.featuredoc module

class FeatureDoc(processor, study)
Bases: builtins.object

Extracts feature information for selected features.

The information returned consists of value lists, number of occurrences, and an summary spreadsheet.

Upon creation, re-initializes the laf processor with requested features plus some needed features.

Args:

study: A dictionary directing the feature study. Contains:

• a list of features to be studied. It is a list of feature names

• a set of absence values, i.e. values like none or unknown that somehow count as the absence
of a value.

• VALUE_THRESHOLD: a parameter that indicates how many distinct values to list in the
summary.

feature_doc()
Create the feature information.

Based on the study information given at the creation of the FeatureDoc object, a set of files is created.

•A tab separated overview of statistical feature/value information.

•For each feature, a file with its values and number of occurrences.

•A file of node types and the features they carry.

60 Chapter 10. etcbc 4.5.3



CHAPTER 11

emdros2laf 4.5.3

11.1 Submodules

11.2 emdros2laf.settings module

class Settings
Bases: builtins.object

Stores configuration information from the main configuration file and the command line.

Defines an extra function in order to get the items in a section as a dictionary, without getting the DEFAULT
items as wel

annotation_skip = {‘self’}

flag(name)

laf_switches = {‘comment_local_deps’}

11.3 emdros2laf.etcbc module

class Etcbc(settings)
Bases: builtins.object

Knows the ETCBC data format.

All ETCBC knowledge is stored in a file that describes objects, features and values. These are many items,
and we divide them in parts and subparts. We have a parts for monads, sections and linguistic objects. When
we generate LAF files, they may become unwieldy in size. That is why we also divide parts in subparts.
Parts correspond to sets of objects and their features. Subparts correspond to subsets of objects and or
subsets of features. N.B. It is “either or”: either

•a part consists of only one object type, and the subparts divide the features of that object type

or

•a part consists of multiple object types, and the subparts divide the object types of that part. If an
object type belongs to a subpart, all its features belong to that subpart too.

In our case, the part ‘monad’ has the single object type, and its features are divided over subparts. The part
‘lingo’ has object types sentence, sentence_atom, clause, clause_atom, phrase, phrase_atom, subphrase,
word. Its subparts are a partition of these object types in several subsets. The part ‘section’ does not
have subparts. Note that an object type may occur in multiple parts: consider ‘word’. However, ‘word’
in part ‘monad’ has all non-relational word features, but ‘word’ in part ‘lingo’ has only relational features,
i.e.features that relate words to other objects.

61



LAF Fabric Documentation, Release 4.5.3

The Etcbc object stores the complete information found in the Etcbc config file in a bunch of data structures,
and defines accessor functions for it.

The feature information is stored in the following dictionaries:

(Ia) part_info[part][subpart][object_type] = set of feature_names NB: object_types may occur in mul-
tiple parts.

(Ib) part_object[part] = set of object_types

(Ic) part_feature[part][object_type] = set of feature_names

(Id) object_subpart[part][object_type] = subpart

Stores the subpart in which each object type occurs, per part

2.object_info[object_type] = [attributes]

Stores the information on objects, except their features and values.

3.feature_info[object_type][feature_name] = [attributes]

Stores the information on features, except their values.

4.value_info[object_type][feature_name][feature_value] = [attributes]

Stores the feature value information

22.reference_feature[feature_name] = True | False

Stores the names of features that reference other object. The feature ‘self’ is an example. But we skip
this feature. ‘self’ will get the value False, other features, such as mother and parents get True

6.annotation_files[part][subpart] = (ftype, medium, location, requires, annotations, is_region)

Stores information of the files that are generated as the resulting LAF resource

The files are organized by part and subpart. Header files and primary data files are in part ‘’. Other files
may or may not contain annotations. If not, they only contain regions. Then is_region is True.

ftype the file identifier to be used in header files

medium text or xml

location the last part of the file name. All file names can be obtained by appending location
after the absolute path followed by a common prefix.

requires the identifier of a file that is required by the current file

annotations the annotation labels to be declared for this file

The feature information file contains lines with tab-delimited fields (only the starred ones are used):
0* 1* 2* 3* 4* 5* 6 7* 8 9 10 11* 12* object_type, feature_name, defined_on, etcbc_type, fea-
ture_value, isocat_key, isocat_id, isocat_name, isocat_type, isocat_def, note, part, subpart 0 1 2 3 4 5
6 7 8

Initialization is: reading the excel sheet with feature information.

The sheet should be in the form of a tab-delimited text file.

There are columns with:

ETCBC information: object_type, feature_name, also_defined_on, type, value.

ISOcat information key, id, name, type, definition, note

LAF sectioning part, subpart

62 Chapter 11. emdros2laf 4.5.3



LAF Fabric Documentation, Release 4.5.3

See the list of columns above.

So the file gives essential information to map objects/features/values to ISOcat data categories. It indicates
how the LAF output can be chunked in parts and subparts.

check_raw_files(part)

feature_atts(object_type, feature_name)

feature_info = {}

feature_list(object_type)

feature_list_subpart(part, subpart, object_type)

is_ref_skip(feature_name)

list_ref_noskip()

make_mql(name, query)

make_query_file(part)

mql(query)

object_atts(object_type)

object_info = {}

object_list(part, subpart)

object_list_part(part)

object_subpart = defaultdict(<function Etcbc.<lambda> at 0x7f78e46f9510>, {})

part_feature = defaultdict(<function Etcbc.<lambda> at 0x7f78e4731ea0>, {})

part_info = {}

part_list()

part_object = defaultdict(<function Etcbc.<lambda> at 0x7f78e46f92f0>, {})

raw_file(part)

reference_feature = {}

run_mql(query_file, result_file)

settings = None

subpart_list(part)

the_subpart(part, object_type)

value_atts(object_type, feature_name, feature_value)

value_info = {}

value_list(object_type, feature_name)

11.4 emdros2laf.laf module

class Laf(settings, et, val)
Bases: builtins.object

Knows the LAF data format.

All LAF knowledge is stored in template files together with sections in the main configuration file. The
LAF class finds those templates, sets up the result files, and fills them.

Note: Templates

11.4. emdros2laf.laf module 63



LAF Fabric Documentation, Release 4.5.3

template[key] = text where key is an entry in the laf_templates section of the main config file.

Note: Files and Filetypes

annotation_files[part][subpart] = (ftype, medium, location, requires, annotations, is_region)

The order is important, so we generate a list too:

file_order list of ftypes according file_types section in main config file, expanded, in the order en-
countered

where

ftype comes from the file_types section in the main config file. It has the shape of LAF file identifier,
but with wild cards.

f.xxxxxx not an annotation file, but primary data or a header file

f_part.subpart annotation file for part, subpart

for each ftype there is an infostring consisting of fields

location file name of corresponding file, modulo a common prefix

medium file type (text or xml)

annotations space separated annotation labels occurring in this part, subpart

requires space separated list of ftypes of required files

is_region reveals whether the file only contains regions or not. A pure region file needs a different
template.

Note: Header Generation

All header files are generated here: * the feature declaration file * the header for the resource as a
whole * the header for the primary data file

The headers of the annotation files are included in those files. Those headers contain statistics: counts
of the number of annotations with a given label. We know those number only after generation because
these statistics will be collected during further processing.

When the annotation files are generated, we use placeholders for the statistics. In a post-generation
stage we read/write the annotation files and replace the place holders by the true numbers. The files
are written in situ. So we must take care that the placeholders contain enough space around them.

Note: Processing

This class provides methods to initialize and finalize the generation of primary data files and annotation
files. There are methods to open/close all files that are relevant to the part that is being processed. (Part
being: ‘monad’, ‘section’, ‘lingo’).

Note: Statistics

Counts are collected in a stats dictionary.

• stats[statistic_name] = statistic_value*

annotation_files = defaultdict(<function Laf.<lambda> at 0x7f78e45db9d8>, {})

et = None

file_handles = {}

file_order = []

finish_annot(part)

finish_primary()

gstats = defaultdict(<function Laf.<lambda> at 0x7f78e45db8c8>, {})

makefeatureheader()

64 Chapter 11. emdros2laf 4.5.3



LAF Fabric Documentation, Release 4.5.3

makeheaders()

makeprimaryheader()

makeresourceheader()

primary_handle = None

report()

settings = None

start_annot(part)

start_primary()

stats = defaultdict(<function Laf.<lambda> at 0x7f78e45db950>, {})

template = {}

11.5 emdros2laf.transform module

class Transform(settings, et, lf)
Bases: builtins.object

Transforms ETCBC data into a LAF resource

ETCBC knowledge comes from the Etcbc class LAF knowledge comes from the Laf class

read data from raw MQL export and build the annotations files For part monad there are extra things: * the
primary data file will be built * one of the annotations files only contains regions, and no annotations

et = None

lf = None

process_lines(part)
Data transformation for part. Input: the lines of a raw emdros output file, which is processed line by
line. Every line contains an object type, object identifier, monad indicator and list of features. This
has to be translated to primary data and annotations.

Efficiency is very important. It will not do to call functions or follow long chains of dereferencing.
Yet a lot has to happen. That is why this is a lengthy loop, and we maintain quite a lot of information
from elsewhere in the program in loop-global variables. Not doing so might increase the running time
10-fold. Currently the complete programs runs within 15 minutes (inclusing generating raw data and
validating) on an MacBook Air mid 2012.

settings = None

transform(part)

interval(iv)

makeuni(match)
Make proper unicode of a text that contains byte escape codes such as backslash xb6

primary_data(text, trailer)
Distil primary data from two features on the word objects. Apply necessary tweaks!

11.6 emdros2laf.validate module

class Validate(settings)
Bases: builtins.object

Validates all generated files, knows the schemas involved.

11.5. emdros2laf.transform module 65



LAF Fabric Documentation, Release 4.5.3

The main program generates a bunch of XML files, according to various schemas. They can be sent to this
object, with or without a schema specification. All files with a schema specification will be validated.

The base locations of the schemas and of the generated files will be retrieved from the main configuration.
All schemas will be copied from source to destination.

generated_files = list of [absolute_path, schema in destination, validation result]

Initialization is: get from config the schema locations and copy them all over

add(xml, xsd)
Add an item to the generated files list. If xsd is given, the file will eventually be validated.

The validation result will be stored in a member of the item, which is initially None. If validation takes
place, None will be replaced by True or False, depending on whether the xml is valid wrt. the xsd.

generated_files = []

report()
Print a list of all generated files and indicate validation outcomes

settings = None

validate()
Validate all eligible files, but only if the validation flag is on

11.7 emdros2laf.run module

dotask(part)

final()

init()

processor()

11.8 emdros2laf.mylib module

class Timestamp
Bases: builtins.object

elapsed()

progress(msg)

timestamp = None

camel(text)

fillup(size, val, lst)

pretty(data)

run(cmd)

runx(cmd)

today()

66 Chapter 11. emdros2laf 4.5.3



CHAPTER 12

Indices and tables

• genindex

• modindex

• search

67



LAF Fabric Documentation, Release 4.5.3

68 Chapter 12. Indices and tables



Python Module Index

e
emdros2laf.etcbc, 61
emdros2laf.laf, 63
emdros2laf.mylib, 66
emdros2laf.run, 66
emdros2laf.settings, 61
emdros2laf.transform, 65
emdros2laf.validate, 65
etcbc.annotating, 59
etcbc.featuredoc, 60
etcbc.preprocess, 59

l
laf.data, 54
laf.elements, 53
laf.fabric, 53
laf.lib, 58
laf.model, 55
laf.names, 55
laf.parse, 55
laf.settings, 57
laf.timestamp, 57

69



LAF Fabric Documentation, Release 4.5.3

70 Python Module Index



Index

A
add() (Validate method), 66
add_logfile() (LafData method), 54
adjust_all() (LafData method), 54
aid (AnnotationHandler attribute), 55
annotation_files (Laf attribute), 64
annotation_skip (Settings attribute), 61
AnnotationHandler (class in laf.parse), 55
API() (LafAPI method), 53
apiname() (Names method), 56
APIprep() (LafAPI method), 53
arrayify() (in module laf.lib), 58

B
Bunch (class in laf.fabric), 53

C
camel() (in module emdros2laf.mylib), 66
characters() (AnnotationHandler method), 55
characters() (HeaderHandler method), 55
check_load_spec() (Names method), 56
check_raw_files() (Etcbc method), 63
comp() (Names method), 56
comp_file() (Names method), 56
compile_all() (LafData method), 54
connect_log() (Timestamp method), 57
Connection (class in laf.elements), 53
create_annots() (in module etcbc.annotating), 59

D
data() (PrimaryData method), 54
DCOMP_SEP (Names attribute), 56
decomp() (Names method), 56
decomp_full() (Names method), 56
deliver() (Names method), 56
dinfo() (Names method), 56
disconnect_log() (Timestamp method), 57
dmsg() (Names method), 56
Dmsg() (Timestamp method), 57
dotask() (in module emdros2laf.run), 66

E
e() (Connection method), 53
E_ANNOT_NON (Names attribute), 56

E_ANNOT_YES (Names attribute), 56
elapsed() (Timestamp method), 66
emdros2laf.etcbc (module), 61
emdros2laf.laf (module), 63
emdros2laf.mylib (module), 66
emdros2laf.run (module), 66
emdros2laf.settings (module), 61
emdros2laf.transform (module), 65
emdros2laf.validate (module), 65
Emsg() (Timestamp method), 57
endElement() (AnnotationHandler method), 55
endElement() (HeaderHandler method), 55
endnodes() (Connection method), 54
et (Laf attribute), 64
et (Transform attribute), 65
Etcbc (class in emdros2laf.etcbc), 61
etcbc.annotating (module), 59
etcbc.featuredoc (module), 60
etcbc.preprocess (module), 59

F
FabricError, 55
Feature (class in laf.elements), 54
feature_atts() (Etcbc method), 63
feature_doc() (FeatureDoc method), 60
feature_info (Etcbc attribute), 63
feature_list() (Etcbc method), 63
feature_list_subpart() (Etcbc method), 63
FeatureDoc (class in etcbc.featuredoc), 60
file_handles (Laf attribute), 64
file_name (AnnotationHandler attribute), 55
file_order (Laf attribute), 64
fill() (in module etcbc.preprocess), 59
fillup() (in module emdros2laf.mylib), 66
final() (in module emdros2laf.run), 66
finish_annot() (Laf method), 64
finish_primary() (Laf method), 64
finish_task() (LafData method), 54
flag() (Settings method), 61

G
generated_files (Validate attribute), 66
GenForm (class in etcbc.annotating), 59
get_all_features() (LafAPI method), 53
getmonads() (in module etcbc.preprocess), 59

71



LAF Fabric Documentation, Release 4.5.3

grouper() (in module laf.lib), 58
gstats (Laf attribute), 64

H
HeaderHandler (class in laf.parse), 55

I
i() (XMLid method), 54
Imsg() (Timestamp method), 57
init() (in module emdros2laf.run), 66
init() (in module laf.parse), 55
interval() (in module emdros2laf.transform), 65
is_ref_skip() (Etcbc method), 63

K
kind_types (Names attribute), 56

L
Laf (class in emdros2laf.laf), 63
laf.data (module), 54
laf.elements (module), 53
laf.fabric (module), 53
laf.lib (module), 58
laf.model (module), 55
laf.names (module), 55
laf.parse (module), 55
laf.settings (module), 57
laf.timestamp (module), 57
laf_switches (Settings attribute), 61
LafAPI (class in laf.fabric), 53
LafData (class in laf.data), 54
LafFabric (class in laf.fabric), 53
lf (Transform attribute), 65
list_ref_noskip() (Etcbc method), 63
load() (LafFabric method), 53
load_again() (LafFabric method), 53
load_all() (LafData method), 54
load_spec_keys (Names attribute), 56
load_spec_subkeys (Names attribute), 57

M
make_annots() (GenForm method), 59
make_array_inverse() (in module laf.lib), 58
make_form() (GenForm method), 59
make_inverse() (in module laf.lib), 58
make_mql() (Etcbc method), 63
make_query_file() (Etcbc method), 63
makefeatureheader() (Laf method), 64
makeheaders() (Laf method), 64
makeprimaryheader() (Laf method), 65
makeresourceheader() (Laf method), 65
makeuni() (in module emdros2laf.transform), 65
model() (in module laf.model), 55
mql() (Etcbc method), 63

N
Names (class in laf.names), 55

nid (AnnotationHandler attribute), 55
Nmsg() (Timestamp method), 57
node_down() (in module etcbc.preprocess), 59
node_order() (in module etcbc.preprocess), 59
node_order_inv() (in module etcbc.preprocess), 59
node_ud() (in module etcbc.preprocess), 59
node_up() (in module etcbc.preprocess), 59
nonerep() (in module etcbc.annotating), 59
normalize_ranges() (in module laf.model), 55

O
object_atts() (Etcbc method), 63
object_info (Etcbc attribute), 63
object_list() (Etcbc method), 63
object_list_part() (Etcbc method), 63
object_subpart (Etcbc attribute), 63
orig_key() (Names method), 57

P
parse() (in module laf.parse), 55
part_feature (Etcbc attribute), 63
part_info (Etcbc attribute), 63
part_list() (Etcbc method), 63
part_object (Etcbc attribute), 63
prep_post() (in module etcbc.preprocess), 59
prepare_all() (LafData method), 54
prepare_dirs() (LafData method), 54
pretty() (in module emdros2laf.mylib), 66
primary_data() (in module emdros2laf.transform), 65
primary_handle (Laf attribute), 65
PrimaryData (class in laf.elements), 54
process_lines() (Transform method), 65
processor() (in module emdros2laf.run), 66
progress() (Timestamp method), 66

Q
query() (Names method), 57

R
r() (XMLid method), 54
raw_file() (Etcbc method), 63
raw_msg() (Timestamp method), 57
reference_feature (Etcbc attribute), 63
report() (Laf method), 65
report() (Validate method), 66
request_files() (Names method), 57
request_init() (Names method), 57
reset() (Timestamp method), 57
resolve_feature() (LafFabric method), 53
run() (in module emdros2laf.mylib), 66
run_mql() (Etcbc method), 63
runx() (in module emdros2laf.mylib), 66

S
s() (Feature method), 54
set_verbose() (Timestamp method), 57
setenv() (Settings method), 57

72 Index



LAF Fabric Documentation, Release 4.5.3

Settings (class in emdros2laf.settings), 61
Settings (class in laf.settings), 57
settings (Etcbc attribute), 63
settings (Laf attribute), 65
settings (Transform attribute), 65
settings (Validate attribute), 66
stamp (AnnotationHandler attribute), 55
start_annot() (Laf method), 65
start_primary() (Laf method), 65
startElement() (AnnotationHandler method), 55
startElement() (HeaderHandler method), 55
stats (Laf attribute), 65
subpart_list() (Etcbc method), 63

T
template (Laf attribute), 65
the_subpart() (Etcbc method), 63
Timestamp (class in emdros2laf.mylib), 66
Timestamp (class in laf.timestamp), 57
timestamp (Timestamp attribute), 66
today() (in module emdros2laf.mylib), 66
Transform (class in emdros2laf.transform), 65
transform() (Transform method), 65
truth (AnnotationHandler attribute), 55

U
unload_all() (LafData method), 55

V
v() (Connection method), 54
V() (Feature method), 54
v() (Feature method), 54
Validate (class in emdros2laf.validate), 65
validate() (Validate method), 66
value_atts() (Etcbc method), 63
value_info (Etcbc attribute), 63
value_list() (Etcbc method), 63
verbose_level (Timestamp attribute), 57
vv() (Connection method), 54

W
Wmsg() (Timestamp method), 57

X
XMLid (class in laf.elements), 54
Xmsg() (Timestamp method), 57

Index 73


	Welcome
	Author
	Who is using LAF-Fabric?

	Release Notes
	4.5.3
	4.5.2
	4.5.1
	4.5
	4.4.7
	4.4.6
	Past

	About
	Description
	Workflow
	License
	Designed for Performance
	LAF feature coverage
	Future directions

	Getting Started
	About
	Platforms
	On a VM
	Your python setup
	Get LAF-Fabric
	Install LAF-Fabric
	Get the data
	Test and run LAF-Fabric
	More configuration for LAF-Fabric
	Writing notebooks

	Background
	What is LAF/GrAF
	Data
	Existing tools for LAF/GrAF resources
	LAF-Fabric
	Interactive notebooks
	Rationale
	Implementation highlights
	Author
	History

	API Reference
	Parts of the API
	Where is the API?
	Calling the API
	Node order
	LAF API
	Extra data preparation

	ETCBC Reference
	What is ETCBC
	Layers
	Node order
	Transcription
	Trees
	Annotating
	Extra Data
	Feature documentation
	MQL

	EMDROS2LAF reference
	Description
	Usage
	Input
	Output
	Definitions
	Project
	See also

	laf 4.5.3
	Submodules
	laf.fabric module
	laf.elements module
	laf.data module
	laf.model module
	laf.parse module
	laf.names module
	laf.settings module
	laf.timestamp module
	laf.lib module

	etcbc 4.5.3
	Submodules
	etcbc.preprocess module
	etcbc.annotating module
	etcbc.featuredoc module

	emdros2laf 4.5.3
	Submodules
	emdros2laf.settings module
	emdros2laf.etcbc module
	emdros2laf.laf module
	emdros2laf.transform module
	emdros2laf.validate module
	emdros2laf.run module
	emdros2laf.mylib module

	Indices and tables
	Python Module Index

